The Botanical Review

, Volume 43, Issue 2, pp 217–280 | Cite as

Mesozoic conifers

  • Charles N. Miller


The Coniferophyta attained their greatest diversity and abundance during the Mesozoic Era. Many early forms died out without apparent involvement in the evolution of the modern types. Yet, all living coniferophyte families and a surprising number of their present-day genera are clearly in evidence in the Mesozoic. Generally, modern families are recognizable by the Late Triassic or Early Jurassic while certain contemporary genera make their appearance as early as the Middle Jurassic. The Pinaceae appears to lag behind other families in that it lacks unequivocal representation before the onset of the Cretaceous although certain Late Triassic and Jurassic remains may belong to the family. Modern coniferophyte families appear to have originated somewhat earlier than was formerly believed and this brings to light problems in envisioning their evolution from the known Voltziales. Seed cones of certain of the latter are now known from petrified material which show a greater modification than was formerly known. Various kinds of detached organs that cannot be assigned to existing families are described and discussed and the bearing of the fossil record in certain questions on coniferophyte systematics is evaluated.


Botanical Review Florin Pollen Cone Fossil Wood Seed Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Die Coniferophyta erreichnen ihren grössen Formenreichtum und die meiste Häufigkeit während des Mesozoikums. Viele frühe Formen sind ausgestorben aus ohne an der Evolution moderner Typen beteiligt zu sein. Jedoch alle noch lebenden Familien der Coniferophyta und eine überaschend grosse Anzahl der heute existierenden Genera lassen sich mit Sicherheit im Mesozoikum nachweisen. Im allgemeinen sind die modernen Familien im später Trias oder im der frühen Jura erkenntlich während gewisse zeitgenössische Genera schon im der mittleren Jura erscheinen. Die Pinaceae scheinen später als andere Familien aufzutreten, sie weisen keine unanfechtbare Vertretung bis vor dem Beginn der Kreidezeit auf, wenngleich Funde von bestimmten Teilstücken aus dem später Trias und der Jura in diese Familie gehören könnten. Moderne Familien der Coniferophyta scheinen etwas früher entstanden zu sein, als man bisher glaubte, und dieses lässt Fragen um ihre Evolution aus dem bekannten Voltziales entstechen. Samenzapfen der letzteren, die grössere Veränderungen aufweisen, als man sie fruher kannte, werden jetzt durch versteinertes Material bekannt. Verschiedenartige abgetrennte Organe, die existierenden Familien nicht zu geschrieben werden können, werden beschrieben und diskutiert, und auf die Bedeutung dieser Fossilienfunde für bestimmte Fragen in der Systematik der Coniferophyta wird hingewiesen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alvin, K. L. 1953. Three abietaceous cones from the Wealden of Belgium. Mem. Inst. Roy. Sci. Nat. Belgium125: 1–42.Google Scholar
  2. —. 1957a. On the two conesPseudoaraucaria heeri (Coemans) nov. comb., andPityostrobus villerotensis nov. sp. from the Wealden of Belgium.135: 1–27.Google Scholar
  3. —. 1957b. OnPseudoaraucaria Fliche emend., a genus of fossil pinaceous cones. Ann. Bot., N.S.21: 33–51.Google Scholar
  4. —. 1960a. On the seedVesquia toumaisii C. E. Bertrand, from the Belgian Wealden Ann. Bot., N.S.24: 508–515.Google Scholar
  5. —. 1960b. Further conifers of the Pinaceae from the Wealden Formation of Belgium. Mem. Inst. Roy. Sci. Nat. Belgium1461-39.Google Scholar
  6. Andrews, H. N. 1961. Studies in Paleobotany. John Wiley and Sons, Inc., New York. 487 pp.Google Scholar
  7. Andrews, H. N. 1970. Index of generic names of fossil plants, 1820–1965. U. S. Geol. Survey Bull. 1300. 354 pp.Google Scholar
  8. Archangelsky, S. 1963. A new Mesozoic flora from Ticó, Santa Cruz Province, Argentina. Bull. British Mus. (Nat. Hist.) Geology8: 4–92.Google Scholar
  9. —. 1966. New gymnosperms from the Ticó Flora, Santa Cruz Province, Argentina. Bull. British Mas. (Nat. Hist.) Geology13: 259–295.Google Scholar
  10. —. 1968. On the genusTomaxellia (Coniferae) from the Lower Cretaceous of Patagonia (Argentina) and its male and female cones. J. Linn. Soc. (Bot.)61: 153–165.Google Scholar
  11. —, andJ. C. Gamerro. 1967. Pollen grains found in coniferous cones from the Lower Cretaceous of Patagonia (Argentina). Rev. Palaeobot. Palynol.5: 179–182.Google Scholar
  12. Arnold, C. A. 1953. Silicified plant remains from the Mesozoic and Tertiary of western North America. II. Some fossil woods from northern Alaska. Pap. Michigan Acad. Sci. Arts. Lett.38: 9–20.Google Scholar
  13. —. 1964. Cordaites-type foliage associated with palm-like plants from the Upper Triassic of southwestern Colorado. Jour. Indian Bot. Soc., Maheshwari Comm. Vol.,42A: 4–9.Google Scholar
  14. —. 1967. The proper designations of the foliage and stems of the Cordaitales. Phytomorphology17: 346–350.Google Scholar
  15. —, andI. S. Lowther. 1955. A new Cretaceous conifer from northern Alaska. Amer. Jour. Bot.42: 522–528.Google Scholar
  16. Ash, S. R. 1972. Late Triassic plants from the Chinle Formation in northeastern Arizona. Palaeontology15: 598–618.Google Scholar
  17. Bailey, I. W. 1933. The cambium and its derivative tissues. VII. Problems in identifying the wood of Mesozoic Coniferae. Ann. Bot.47: 145–157.Google Scholar
  18. Banks, H. P. 1970. Evolution and Plants of the Past. Wadsworth Publishing Co., Inc., Belmont, California. 170 pp.Google Scholar
  19. Barale, G. 1973. Contribution à la connaissance de la flore des calaires lithographiques de la province de Lérida (Espagne):Frenelopsis rubiesensis n. sp. Rev. Palaeobot. Palynol.16: 271–287.Google Scholar
  20. Barnard, P. D. W. 1968. A new species ofMasculostrobus Seward producingClassopollis pollen from the Jurassic of Iran. J. Linn. Soc. (Bot.)61: 167–176.Google Scholar
  21. Beck, C. B. 1970. The appearance of gymnospermous structure. Biol. Rev.45: 379–400.Google Scholar
  22. Bell, W. A. 1949. Uppermost Cretaceous and Paleocene floras of Western Alberta. Geol. Surv., Canada, Bull.13: 1–129.Google Scholar
  23. —. 1956. Lower Cretaceous floras of western Canada. Canada Geol. Surv. Mem.285: 1–331.Google Scholar
  24. —. 1957. Flora of the Upper Cretaceous Naimo Group of Vancouver Island, British Columbia. Canada Geol. Surv. Mem.293: 1–84.Google Scholar
  25. —. 1963. Upper Cretaceous floras of the Dunvegan, Bad Heart, and Milk River Formations of western Canada. Geol. Surv. Canada Bull.94: 1–76.Google Scholar
  26. Berry, E. W. 1903. New species of plants from the Matawan Formation. Amer. Nat.37: 677–684.Google Scholar
  27. —. 1908. A mid-Cretaceous species ofTorreya. Amer. Jour. Sci., 4th ser.25: 382–386.Google Scholar
  28. —. 1910. Contributions to the Mesozoic flora of the Atlantic coastal plain, pt. 5. Torrey Bot. Club Bull.37: 181–200.Google Scholar
  29. -. 1914. The Upper Cretaceous and Eocene floras of South Carolina and Georgia. U. S. Geol. Survey Prof. Pap. 84. 200 pp.Google Scholar
  30. -. 1916. Maryland Geol. Surv., Upper Cretaceous. 61–105: 776–805.Google Scholar
  31. —. 1928. Tertiary fossil plants from the Argentine Republic. Proc. U. S. Nat. Mus.73(2743): 1–27.Google Scholar
  32. -. 1938. Tertiary Flora from the Rio Pichileufu, Argentina. Geol. Soc. Amer., Spec. Pap. 12. 140 pp.Google Scholar
  33. Bhardwaj, D. C. 1953. Jurassic woods from the Rajmahal Hills, Bihar. The Paleobotanist2: 59–70.Google Scholar
  34. Bock, W. 1954.Primaraucaria, a new araucarian genus from the Virginia Triassic. Jour. Paleo.28: 32–42.Google Scholar
  35. -. 1969. The American Triassic Flora and Global Distribution. Geological Center. Pennsylvania. 406 pp.Google Scholar
  36. Bose, M. N. 1961. Leaf-cuticle and other plant microfossils from the Mesozoic rocks of Andøoya, Norway. The Paleobotanist8: 1–7.Google Scholar
  37. —, andH. K. Maheshwari. 1973. Some detached seed-scales belonging to Araucariaceae from the Mesozoic rocks of India. Geophytology3: 205–214.Google Scholar
  38. Brown, R. W. 1935. Some fossil conifers from Maryland and North Dakota. Washington Acad. Sci. Jour.25: 441–450.Google Scholar
  39. Brown, J. T. 1972. The Flora of the Morrison Formation (Upper Jurassic) of Central Montana. Ph.D. Dissertation, Univ. of Montana. 64 pp.Google Scholar
  40. Buchholz, J. T. 1934. The classification of Coniferales. Trans. Illinois Acad. Sci.25: 112–113.Google Scholar
  41. —. 1948. Generic and subgeneric distribution of the Coniferales. Bot. Gaz.110: 80–91.Google Scholar
  42. Burlingame, L. L. 1915a. The origin and relationships of the araucarians. I. Bot. Gaz.60: 1–26.Google Scholar
  43. —. 1915b. The origin and relationships of the araucarians. II. Bot. Gaz.60: 89–114.Google Scholar
  44. Calder, M. G. 1953. A coniferous petrified forest in Patagonia. Bull. British Mus. (Nat. Hist.) Geol.2: 97–138.Google Scholar
  45. Chaloner, W. G. andJ. Lorch. 1960. An opposite-leaved conifer from the Jurassic of Israel. Palaeontology2: 236–242.Google Scholar
  46. Chaney, R. W. 1950. A revision of fossilSequoia andTaxodium in western North America based on the recent discovery ofMetasequoia. Amer. Philos. Soc. Trans.40: 171–240.Google Scholar
  47. —. 1954. A new pine from the Cretaceous of Minnesota and its paleoecological significance. Ecology35: 145–151.Google Scholar
  48. Christophel, D. C. 1973.Sciadopitophyllum canadense gen. et sp. nov., a new conifer from western Alberta. Amer. Jour. Bot.60: 61–66.Google Scholar
  49. Creber, G. T. 1967. Notes on some petrified cones of the Pinaceae from the Cretaceous. Linn. Soc. London, Proc.178: 147–152.Google Scholar
  50. Cridland, A. A. 1964.Amyelon in American coal-balls. Palaeontology7: 186–209.Google Scholar
  51. Critchfield, W. B. and E. L. Little, Jr. 1966. Geographic distribution of the pines of the world. U. S. Dept. Agric. Misc. Publ. #991.Google Scholar
  52. Dallimore, W. andA. B. Jackson. 1966. A Handbook of the Coniferae and Ginkgoaceae, 4th Edition (revised by S. G. Harrison). St. Martin’s Press, New York. 729 pp.Google Scholar
  53. Daugherty, L. H. 1941. The Upper Triassic flora of Arizona. Carnegie Inst. Wash. Publ. 526.Google Scholar
  54. De Laubenfels, D. J. 1953. The external morphology of coniferous leaves. Phytomorph.3: 1–20.Google Scholar
  55. Delevoryas, T. andR. C. Hope. 1973. Fertile coniferophyte remains from the Late Triassic Deep River Basin, North Carolina. Amer. Jour. Bot.60: 810–818.Google Scholar
  56. ——. 1975.Voltzia andrewsii, n. sp., and Upper Triassic seed cone from North Carolina, U.S.A. Rev. Palaeobot. Palynol.20: 67–74.Google Scholar
  57. Dilcher, D. L. 1969.Podocarpus from the Eocene of North America. Science164: 299–301.PubMedGoogle Scholar
  58. Dorofeyev, P. I. andI. N. Sveshnikova. 1959. On the discovery of remains of the genusSciadopitys S. and Z. in the Upper Cretaceous deposit of the Urals. Doklady Akademii Nauk S.S.S.R. (Earth Sciences Sect.)128: 1014–1016.Google Scholar
  59. Dupler, A. W. 1920. Ovuliferous structures ofTaxus canadensis. Bot. Gaz.69: 492–520.Google Scholar
  60. Eckenwalder, J. E. 1976. Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madrono23: 237–256.Google Scholar
  61. Endo, S. 1951. A record ofSequoia from the Jurassic of Manchuria. Bot. Gaz.113: 228–230.Google Scholar
  62. Florin, R. 1922. On the geological history of the Sciadopitinae. Svensk Bot. Tidskr.16: 260–270.Google Scholar
  63. —. 1948. On the morphology and relationships of the Taxaceae. Bot. Gaz.110: 31–39.Google Scholar
  64. —. 1950. Upper Carboniferous and Lower Permian Conifers. Bot. Rev.16: 258–282.Google Scholar
  65. —. 1951. Evolution in cordaites and conifers. Acta Horti Bergiani15: 285–388.Google Scholar
  66. —. 1958. On Jurassic taxads and conifers from northwestern Europe and eastern Greenland. Acta Horti Bergiani17: 257–402.Google Scholar
  67. Fontaine, W. M. 1889. The Potomac or younger Mesozoic flora. U. S. Geol. Surv. Mon. 15. 377 pp.Google Scholar
  68. Frenquelli, J. 1942. Contributiones al conocimiento de la flora del Gondwana Superior en la Argentina. VIII.Phacolepis mendozana n. gen. et n. sp. Notas del Museo de la Plata7: 323–330.Google Scholar
  69. Gould, R. E. 1975. The succession of Australian pre-tertiary megafossil floras. Bot. Rev.41: 453–483.Google Scholar
  70. Grambast, L. 1952. Sur la signification des structures généralisées chez les Coniférales et la valeur des Protopinacées en tant que groupe. C. R. Acad. Sci. Paris235: 1533–1535.PubMedGoogle Scholar
  71. —. 1961. Évolution des structures ligneuses chez les Coniférophytes. Bull. Soc. Bot. France, Mém.39: 30–41.Google Scholar
  72. Grauvogel-Stamm, L. 1969. Nouveaux types d’organes reproducteurs males de conifères du gres a Voltzia (Trias Inférieur) des Vosges. Bull. Serv. Carte géol. Als. Lorr.22: 93–120.Google Scholar
  73. —. 1972. Révision de cônes mâles du Keuper “Inférieur” du Worcestershire (Angleterre) attribués àMasculostrobus willsi Townrow. Paleontographica140B: 1–26.Google Scholar
  74. — andL. Grauvogel. 1973.Masculostrobus acuminatus nom. nov., un un nouvel organe reproducteur male de gymnosperme du Grés à Voltzia (Trias Inférieur) des Vosges (France). Géobios6: 101–114.Google Scholar
  75. —. 1975.Aethophyllum Brongniart 1828, conifère (non Équisétale) du Grès à Voltzia (Buntsandstein Supérieur) des Vosges (France). Note préliminaire. Géobios8: 143–146.Google Scholar
  76. Greguss, P. 1955. Identification of Living Gymnosperms on the Basis of Xylotomy. Akadémiai Kiadô. Budapest. 263 pp.Google Scholar
  77. —. 1967. Fossil Gymnosperm Woods in Hungary. Akadémiai Kiadó, Budapest. 136 pp.Google Scholar
  78. Harris, T. M. 1935. The fossil flora of Scoresby Sound, East Greenland, Pt. 4: Ginkgoales, Coniferales, Lycopodiales and isolated fructifications. Medd. om Gronland112: 176 pp.Google Scholar
  79. Harris, T. M. The fossil coniferElatides williamsoni. Ann. Bot. N. S.7: 325–339.Google Scholar
  80. — 1953. Conifers of the Taxodiaceae from the Wealden Formation of Belgium. Mem. Inst. Roy. Sci. Nat. Belgium126: 1–43.Google Scholar
  81. — 1957. A Liasse-Rhaetic flora in South Wales. Proc. Roy. Soc., B,147: 289–308.Google Scholar
  82. -. 1969. Naming a fossil conifer. Bot. Soc. Bengal, J. Sen. Mem. Vol., 243–252.Google Scholar
  83. —. 1973. Pollen from fossil cones. The Botanique4: 1–8.Google Scholar
  84. —. 1976a. The Mesozoic gymnosperms. Rev. Palaeobot. Palynol.21: 119–134.Google Scholar
  85. —. 1976b. Two neglected aspects of fossil conifers. Amer. Jour. Bot.63: 902–910.Google Scholar
  86. Heer, O. 1874. Nachträge zur miocene Flora Grönlands,in Flora fossilis arctica, Band 3, Heft 3: Kgl. Svenska vetenskapsakad. handlingar,12: 1–11.Google Scholar
  87. —. 1880. Nachträge zur Jura-Flora Sibiriens,in Flora fossils arctica, Bd. 6, Teil 1, Heft 1: Acad. imp. sci. St. Pétersbourg Mém., v. 27, p. 1–34.Google Scholar
  88. -. 1883. Die fossile Flora der Polarlander,in Flora fossilis arctica, Band 7, Zurich. 275 pp.Google Scholar
  89. Hildreth, S. 1837. Miscellaneous observations made during a tour in May, 1835, to the falls of Cuyahoga, near Lake Erie. Amer. Jour. Sci., 1st ser.,31: 1–84.Google Scholar
  90. Hirmer, M. andL. Hörhammer. 1934. Zur weiteren Kenntis vonCheirolepis Schimper andHirmeriella Hörhammer mit Bemerkungen über deren systematisch Stellung. Palaeontographica79B: 67–84.Google Scholar
  91. Hollick, A. and E. C. Jeffrey. 1906. Affninites of certain Cretaceous plant remains commonly referred to the generaDammara andBrachyphyllum. Google Scholar
  92. ——. 1909. Studies of Cretaceous coniferous remains from Kreischerville, New York. New York Bot. Gard. Mem.3: 1–76.Google Scholar
  93. — andG. C. Martin. 1930. The Upper Cretaceous floras of Alaska. U. S. Geol. Surv. Prof. Paper159: 1–116.Google Scholar
  94. Jeffrey, E. C. 1908. On the structure of the leaf in Cretaceous pines. Ann. Bot.22: 207–220.Google Scholar
  95. —. 1912. The history, comparative anatomy, and evolution of the araucarioxylon type. Proc. Amer. Acad. Arts, Sci.48: 531–571.Google Scholar
  96. —. 1917. The Anatomy of Woody Plants. Univ. Chicago Press, Chicago, Illinois. 478 pp.Google Scholar
  97. Jongmans W. J. and S. J. Dijkstra. 1971–75. Fossilium Catalogus II: Plantae, Pars 79–87, Gymnospermae, Uitgeverig Dr. W. Junk B. V., ’s-Gravenhage. 1094 pp.Google Scholar
  98. Jung, W. W. 1968.Hirmerella muensteri (Schenk) Jung nov. comb., eine bedeutsame Konifere des Mesozoikums. Palaeontographica122B: 55–93.Google Scholar
  99. Kendall, M. W. 1949a. On a new conifer from the Scottish Lias. Ann. and Mag. Nat. Hist., ser. 12,2: 299–307.Google Scholar
  100. —. 1949b. OnBrachyphyllum expansum (Sternberg) Seward, and its cone. Ann. and Mag. Nat. Hist., ser. 12,2: 308–320.Google Scholar
  101. —. 1952. Some conifers from the Jurassic of England. Ann. and Mag. Nat. Hist., ser. 125: 583–594.Google Scholar
  102. Keng, H. 1969. Aspects of morphology ofAmentotaxus formosana with a note on the taxonomic position of the genus. Jour. Arnold Arb.50: 432–446.Google Scholar
  103. Konar, R. N. andY. P. Oberoi. 1969. Recent work on reproductive structures of living conifers and taxads—a review. Bot. Rev.35: 89–116.Google Scholar
  104. Knobloch, E. 1972.Aachenia debeyi n.g.n.sp.—eine neue Konifere aus dem Senon von Aachen. N. Jb. Geol. Paläont. Mh.7: 400–406.Google Scholar
  105. Kon’no, E. 1962. Some coniferous male fructifications from the Carnic Formation in Yamaguchi Prefecture, Japan. Tohoku Univ. Sci. Rept., 2nd ser. (Geol.) Spec. v: 9–19.Google Scholar
  106. —. 1968. Additions to some younger Mesozoic plants from Malaya. Geol. Paleont. Southeast Asia4: 139–155.Google Scholar
  107. Knowlton, F. H. 1905. Fossil plants of the Judith River beds, pp. 129–155in Stanton, T. W. and J. B. Hatcher. Geology and Paleontology of the Judith River beds. U. S. Geol. Survey Bull. 257.Google Scholar
  108. -.1916. The flora of the Fox Hills Sandstone. U. S. Geol. Surv. Prof. Pap. 98-H: 85–93.Google Scholar
  109. Krassilov, V. A. 1967. The Early Cretaceous Flora of South Primorye and its bearing on Stratigraphy. Moscow. 364 pp. (In Russian).Google Scholar
  110. —. 1971. Evolution and systematics of conifers (critical review). Paleont. Zhur.1: 7–20.Google Scholar
  111. —. 1974.Podocarpus from the Upper Cretaceous of eastern Asia and its bearing on the theory of conifer evolution. Paleontology17: 365–370.Google Scholar
  112. Kräusel, R. 1949. Die fossilen Koniferen-Hölzer. Palaeontographica89B: 83–203.Google Scholar
  113. —. 1952.Pachylepis nov. gen., eine neue Konferen-Gattung aus dem süddeutschen Keuper. Senckenbergiana32: 343–350.Google Scholar
  114. — andK. P. Jain. 1964. New fossil coniferous woods from the Rajmahal Hills, Bihar, India. The Paleobotanist12: 59–66.Google Scholar
  115. Lemoigne, Y. 1967. Paléoflore à Cupressales dans le Trias-Rhétien du Contentin. C. R. Acad. Sci. Paris264: 715–718.Google Scholar
  116. Lesquereux, L. 1874. Contributions to the fossil flora of the Western Territories —Part 1, The Cretaceous flora. U. S. Geol. and Geog. Survey Terr. Rept.,6: 1–136.Google Scholar
  117. Lorch, I. 1968. Some Jurassic conifers from Israel. J. Linn. Soc. (Bot.)61: 177–188.Google Scholar
  118. Matsuo, H. 1962. A study on the Asuwa flora (Late Cretaceous age) in the Hokuriku Dustruct, central Japan. Sci. Rep. Kanazawa Univ.8: 177–250.Google Scholar
  119. —. 1966. Plant fossils of the Izumi group (Upper Cretaceous) in the Izumi Mountain Range, Kinki District, Japan. Ann. Sci. Kanazawa Univ.,3: 67–74.Google Scholar
  120. —. 1970. On the Omichidani flora (Upper Cretaceous), inner side of central Japan. Trans. Proc. Palaeont. Soc. Japan, N. S.80: 371–389.Google Scholar
  121. Miller, C. N. 1974.Pityostrobus hallii, a new species of structurally preserved conifer cones from the Late Cretaceous of Maryland. Amer. Jour. Bot.61: 798–804.Google Scholar
  122. —. 1975. Petrified cones and needle bearing twigs of a new taxodiaceous conifer from the Early Cretaceous of California. Amer. Jour. Bot.62: 706–713.Google Scholar
  123. —. 1976a. Early evolution in the Pinaceae. Rev. Palaeobot. Palynol.21: 101–117.Google Scholar
  124. —. 1976b. Two new pinaceous cones from the Early Cretaceous of California. Jour. Paleo.50: 821–832.Google Scholar
  125. — andJ. T. Brown. 1973. A new voltzialean cone bearing seeds with embryos from the Permian of Texas. Amer. Jour. Bot.60: 561–569.Google Scholar
  126. Mitra, A. K. 1927. On the occurrence of two ovules on araucarian cone-scales. Ann. Bot.41: 461–471.Google Scholar
  127. Nathorst, A. G. 1908. Paläobotanische Mitteilungen, y, ÜberPalissya, Stachyotaxus andPalaeotaxus Kgl. Svenska vetenskapsakad. handlingar.43: 1–20.Google Scholar
  128. Nishida, M. 1973. On some petrified plants from the Cretaceous of Chosi, Chiba Prefecture VI. Bot. Mag. Tokyo86: 189–202.Google Scholar
  129. Ogura, Y. 1930. On the structure and affinities of some Cretaceous plants from Hokkaido. Tokyo Univ. Fac. Sci. Jour., sec. 3, Botany2: 381–412.Google Scholar
  130. —. 1932. On the structure and affinities of some Cretaceous plants from Hokkaido —second contribution. Tokyo Univ. Fac. Sci. Jour., sec. 3, Botany2: 455–483.Google Scholar
  131. Page, V. M. 1973. A new conifer from the Upper Cretaceous of central California. Amer. Jour. Bot.60: 570–575.Google Scholar
  132. Pant, D. D. andG. K. Srivastava. 1968. On the cuticular structure ofAraucaria (Araucarites) cutchensis (Feistmantel) comb. nov. from the Jabalpur Series, India. J. Linn. Soc. (Bot.)61: 201–206.Google Scholar
  133. Penny, J. S. 1947. Studies on the conifers of the Magothy flora. Amer. Jour. Botany34: 281–296.Google Scholar
  134. Ramanujam, C. G. K. 1969. A petrified bark of Cupressaceae from the Upper Cretaceous of Alberta. Canadian Jour. Bot.48: 855–858.Google Scholar
  135. —. 1972. Fossil coniferous woods from the Oldman Formation (Upper Cretaceous) of Alberta. Canadian Jour. Bot.50: 595–602.Google Scholar
  136. Rao, A. R. andM. N. Bose. 1970.Podostrobus gen. nov., a petrified podocarpaceous male cone from the Rajmahal Hills, India. Paleobotanist19: 83–85.Google Scholar
  137. Robison, C. R. 1975. Pinaceous Dwarf Shoots from the Late Cretaceous Magothy Formation of Martha’s Vineyard Island, Massachusetts. Ph.D. Dissertation, Univ. of Montana. 106 pp.Google Scholar
  138. Roselt, G. 1955. Eine neue männliche Gymnospermenfruktifikation aus dem Unteren Keuper von Thüringen and ihre Beziehungen zu anderen Gymnospermen. Friedrich-Schiller-Univ. Wiss. Zeitschr., Jahrg.5: 75–118.Google Scholar
  139. —. 1958. Neue Koniferen aus dem unteren Keuper and ihre Beziehungen zu verwandten fossilen und rezenten. Friedrich-Schiller-Univ. Wiss. Zeitschr., Jahrg.5: 75–118.Google Scholar
  140. Rothwell, G. W. 1976. The vascular architecture ofCordaites concinnus Delevoryas. Bot. Soc. America, Program of Abstracts, p. 30.Google Scholar
  141. Rouse, G. E. 1967. A Late Cretaceous plant assemblage from east-central British Columbia, I. Fossil leaves. Canadian Jour. Earth Sci.4: 1185–1197.Google Scholar
  142. Roy, S. K. 1972. Fossil wood of Taxaceae from the McMurray Formation (Lower Cretaceous) of Alberta, Canada. Canadian Jour. Bot.50: 349–352.Google Scholar
  143. Sah, S. C. D. 1957.Coniferocaulon latisulcatum sp. nov. from the Rajmahal Hills, Bihar, with remarks on the affinities of the genus. Paleobotanist6: 71–76.Google Scholar
  144. Sahni, B. 1931. Revisions of Indian fossil plants —Part 2, Coniferales. India Geol. Survey Mem. 2, Palaeontologia Indica11: 51–124.Google Scholar
  145. Saxton, W. T. 1934. Notes on Conifers VIII. The morphology ofAustrotaxus spicata Compton. Ann. Bot.48: 412–427.Google Scholar
  146. Schmid, R. 1967. Electron microscopy of wood ofCallixylon andCordaites. Amer. Jour. Bot.54: 720–729.Google Scholar
  147. Schweitzer, H. I. 1963. Der weibliche Zapfen von Pseudovoltzia liebeana und seine Bedeutung für die Phylogenie der Koniferen. Palaeontographica113B: 1–29.Google Scholar
  148. —. 1974. Die “Tertiären” Koniferen Spitzbergens. Palaeontographica149B: 1–89.Google Scholar
  149. Seward, A. C. 1919. Fossil Plants. Cambridge University Press, V. 4 (reprinted from the original. 1969). Hafner Publishing Co., Inc., New York, 543 pp.Google Scholar
  150. Sharma, B. D. 1970.Taxaceoxylon cupressoides sp. nov. from Dhokuti in the Rajmahal Hills, India. Ameghiniana7: 275–278.Google Scholar
  151. Shoemaker, R. E. 1966. Fossil leaves of the Hell Creek and Tullock Formations of eastern Montana. Palaeontographica119B: 54–75.Google Scholar
  152. Singh, H. 1961. The life history and systematic position ofCephalotaxus drupacea sieb, et Aucc. Phytomorph.11: 153–197.Google Scholar
  153. Spegazzini, C. 1924. Coniferales fosiles Patagonicas. Soc. cient. Argentina Anales98: 125–139.Google Scholar
  154. Stockey, R. A. 1975. Seeds and embryos ofAraucaria mirabilis. Amer. Jour. Bot.62: 856–868.Google Scholar
  155. Stopes, M. 1915. Catalogue of the Mesozoic plants in the British Museum. The Cretaceous flora, Part 2, Lower Greensand (Aptian) plants from Britain. British Mus. (Nat. Hist.), 360 pp.Google Scholar
  156. Stopes, M. C. andK. Fujii. 1910. Studies on the structure and affinities of Cretaceous plants. Roy. Soc. London Philos. Trans.201: 1–90.Google Scholar
  157. Teixeira, C. 1948. Flora mesozóica portuguesa. Portugal Servicos geol., Pt. 1, 118 pp.Google Scholar
  158. -. 1950. Flora mesozóica portuguesa. Portugal Servicos geol., pt. 2, 31 pp.Google Scholar
  159. Thompson, R. B. 1914. The spur shoot of the pines. Bot. Gaz.57: 362–385.Google Scholar
  160. Thompson, R. B. andA. E. Allin. 1913. Do the Abietineae extend to the Carboniferous? Bot. Gaz.53: 339–344.Google Scholar
  161. Townrow, J. A. 1962. On some disaccate pollen grains of Permian to Middle Jurassic age. Grana3: 13–44.Google Scholar
  162. —. 1967a. OnRissikia andMataia, podocarpaceous conifers from the Lower Mesozoic of the southern lands. Pap. and Proc. Roy. Soc. Tasmania101: 103–136.Google Scholar
  163. —. 1967b. On a conifer from the Jurassic of East Antarctica. Pap. Proc. Roy. Soc. Tasmania101: 137–147.Google Scholar
  164. —. 1967c. TheBrachphyllum crassum complex of fossil conifers. Pap. Roy. Soc. Tasmania101: 149–172.Google Scholar
  165. —. 1967d. OnVoltziopsis, a southern conifer of Lower Triassic age. Pap. Proc. Roy. Soc. Tasmania101: 173–188.Google Scholar
  166. —. 1969. Some Lower Mesozoic Podocarpaceae and Araucariaceae. Pages 159–184in Gondwana Stratigraphy. UNESCO. Louis-Jean, Gap. France.Google Scholar
  167. Van Konijnenburg-Van Cittert, J. H. A. 1971.In situ gymnosperm pollen from the Middle Jurassic of Yorkshire. Acta Bot. Neerl.20: 1–96.Google Scholar
  168. —. 1972. In situ gymnosperm pollen from the Middle Jurassic of Yorkshire. Acta Bot. Neerl.20: 95–98.Google Scholar
  169. Vaudois, N. andC. Privé. 1971. Révision des bois fossiles de Cupressace. Palaeontographica134B: 61–86.Google Scholar
  170. Velenovsky, J. 1885. Die Gymnospermen der böhmischen Kreideformation. Prague, 34 pp.Google Scholar
  171. Velenovsky, J.. 1889. Kvetena ceského Cenomanu. Abhandl. K. bohm. Ges. Wiss., ser. 7, vol.3: 1–75.Google Scholar
  172. -and L. Viniklár. 1926. Flora cretacea bohemiae. Czechoslovakia Statniho Geol. Üstav. Rozpravy, pt. 2, p. 1–51.Google Scholar
  173. -and -. 1927. Flora cretacea bohemiae. Czechoslovakia Statniho Geol. Ústav. Rozpravy, pt. 2, p. 1–51.Google Scholar
  174. Vishnu-Mittre. 1954.Araucarites bindrabunensis sp. nov., a petrified megastrobilus from the Jurassic of Rajmahal Hills, Bihar. The Paleobotanist3: 103–108.Google Scholar
  175. —. 1958. Studies on the fossil flora of Nipania (Rajmahal series), Bihar —Coniferales. The Paleobotanist6: 82–122.Google Scholar
  176. Vogellehner, D. 1965. Untersuchungen zur Anatomie und Systematik der verkieselten Hölzer aus dem fränkischen und südthüringischen Keuper. Erlanger geol. Abh.59: 1–76.Google Scholar
  177. —. 1967. Zur Anatomie und Phylogenie Mesozoischer Gymnospermenhölzer, 5: Prodomus zu einer Monographie der Protopinaceae I. Die protopinoiden Hölzer der Trias. Palaeontographica121B: 30–51.Google Scholar
  178. —. 1968. Zur Anatomie und Phylogenie mesozoischer Gymnospermenholzer, 7: Prodromus zu einer Monographie der Protopinaceae II. Die protopinoiden Holzer des Jura. Palaeontographica124B: 125–162.Google Scholar
  179. Walton, J. 1928. On the structure of a Paleozoic cone-scale and the evidence it furnished of the primitive nature of the double cone-scale in the conifers. Mem. and Proc. Manchester Lit. and Phil. Soc.73: 1–6.Google Scholar
  180. Weber, R. 1975.Aachenia knoblochi n. sp., an interesting conifer from the Upper Cretaceous Olmos Formation of northeastern Mexico. Palaeontographica152B: 76–83.Google Scholar
  181. Wesley, A. 1956. Contributions to the knowledge of the flora of the grey limestones of Veneto —Part 1, A revision of the flora fossilis formationis oolithicae of De. Zingo. 1st. geol. e mineral. Univ. Padova Mem.,19: 1–68.Google Scholar
  182. Wieland, G. R. 1935. The Cerro Cuadrado petrified forest. Carnegie Inst. Washington Pub. 449. 180 pp.Google Scholar

Copyright information

© The New York Botanical Garden 1977

Authors and Affiliations

  • Charles N. Miller
    • 1
  1. 1.Department of BotanyUniversity of Montana Missoula

Personalised recommendations