Economic Botany

, Volume 13, Issue 3, pp 243–260 | Cite as

Recent highlights in the chemurgy of xerophytic plants

  • Robert R Cruse


The practical economy of the utilization of the xerophytic plants is dependent upon a fairly complete utilization of the extractives of the particular species involved. For example, agaves (century plants) yield fiber, sapogenins, and some miscellaneous extractives, which vary with the species.


Alkaloid Economic Botany Jojoba Prickly Pear Mescaline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdul Akher, M. Smith, F., and Spries-tersbach, D. The composition of mes-quite gum. Part IV. Determination of the structure of the amide of 6-B-(4-methyl D-glucopyruronosyl) a-methyl-D-galactopyranoside. Jour. Chem. Soc. (London): 3637–3640. 1952.Google Scholar
  2. 2.
    Alderete, A. The absorptive properties of the fleshy pulp of some species ofOpuntia andCereus. Publs. Inst. Invest. Microquim Univ. Nacl. Litoral (Rosario, Argentina)21: 69–149. 1955. Chem. Abstr.50: 14890d. 1955.Google Scholar
  3. 3.
    Ambul, E. Increasing the growth of plants by pretreatment of their seeds. Spanish pat. no. 211,029, Jan. 13, 1954.Google Scholar
  4. 4.
    Kahle, H., Nesselmann, K., Sorg, K. W., Vaziri, M., and Langenburg, R. A. Process and apparatus for separating fibers and pulp of fiber plants, particularly for the production of sisal fibers from Agave leaves. German patent no. 825, 580, December 20, 1951, assigned to Gesellschaft für Linde's Eismachinen A.-G., & R. A. Langenberg. Chem. Abstr.49: 2734a. 1955.Google Scholar
  5. 5.
    Anon. Production of hecogenin from sisal. Mfg. Chemist26: 394. 1955. Chem. Abstr.50: 1261 g. 1956.Google Scholar
  6. 6.
    Anon. Steroids from sisal: Latin America's bid for the hormone business. Chemical Week 80, #16: 41. April 20, 1957.Google Scholar
  7. 7.
    Anon. The Church and the cactus. Time49: Aug. 9, 1954.Google Scholar
  8. 8.
    Anon. Fructose. Indian patent no. 48, 719, Sept. 16, 1953. Assigned to Council of Scientific & Industrial Research. Chem. Abstr.48: 1720b. 1954.Google Scholar
  9. 9.
    Anon. Acids from gums. British patent no. 689,623, April 1, 1953. Assigned to Harris-Seybold Co. Chem. Astr.47: 10256 g. 1953.Google Scholar
  10. 10.
    Anon. Fructose. Indian patent no. 51575, Sept. 7, 1955. Assigned to Coun. Sci. & Ind. Res. Chem. Abstr.50: 592 c. 1956.Google Scholar
  11. 11.
    Baker, C. H. The Gentleman's Companion1: 184. Crown, 1946.Google Scholar
  12. 12.
    Bennett, E. L. and Bonner, J. Isolation of plant growth inhibitor fromThamnosa montana. Am. Jour. Bot.40: 29–33. 1953.CrossRefGoogle Scholar
  13. 13.
    Beroza, M. and Barthel, W. F. Insecticide synergists, chemical structure and activity of Pyrethrin and Allethrin synergists for control of the housefly. Jour. Ag. Food Chem.5: 855–9. 1957.CrossRefGoogle Scholar
  14. 14.
    Bhatia, I. S. A polyfructosidase in extracts ofAgave vera crus. Bull. Central Food Techn. Res. Inst. (Mysore)3: 310. 1954. Chem. Abstr.49: 6384d. 1955.Google Scholar
  15. 15.
    Bhatia, I. S., Satyanarayana, M. N., and Srinivasan, M. Transfructosidase fromAgave vera cruz. Current Science (India)23: 53–4. 1954. Chem. Abstr.48: 8282d. 1954.Google Scholar
  16. 16.
    Bhatia, I. S., Satyanarayana, M. N., and Srinivasan, M. Transfructosidase fromAgave vera crus. Biochem. Jour.61: 171–4. 1955. Chem. Abstr.49: 16071 h. 1955.Google Scholar
  17. 17.
    Blair, B. O. Mesquite seed and seedling response to 2,4-D, and 2,4,5-T. Botan. Gaz.112: 508–12. 1951. Chem. Abstr.45: 8698 e. 1951.CrossRefGoogle Scholar
  18. 18.
    Blair, B. O. and Fuller, W. H. Translo-cation of 2,4-dichloro-5-iodophenoxy-acetic acid in velvet mesquite seedlings. Botan. Gaz.113: 368–72. 1952. Chem. Abstr.46: 5775 a. 1952.CrossRefGoogle Scholar
  19. 19.
    Blair, B. O. and Glendening, G. E. Intake and movement of herbicides injected into mesquite. Botan. Gaz.115: 173–9. 1953. Chem. Abstr.48: 9606 b. 1954.CrossRefGoogle Scholar
  20. 20.
    Bonner, J., Parker, M. W., and Monter-moso, J. C. Biosynthesis of rubber. Science120: 549–51. 1954.PubMedCrossRefGoogle Scholar
  21. 21.
    Brockmann, H. Photodynamisch wirk-some pflanzenfarbstoffe (photodynami-cally active plant pigments) Fortsch. Chemie Org. Naturstoffe14: 142–85. 1957.Google Scholar
  22. 22.
    Brown, J. G. Antibiotics in relation to some bacterial diseases of plants. Proc. Intern. Bot. Cong., Stockholm,7: 449. 1953. Chem. Abstr.48: 12890 d. 1954.Google Scholar
  23. 23.
    Bruins, P. F. Sisal fiber and wax. U. S. patent no. 2,649,624, Aug. 25, 1953. Assigned to Christian Missions Foundation, Inc.Google Scholar
  24. 24.
    Buscaino, V. M. Experimental psychiatry. Gazz. Sanit.20: 417–20. 1949. Excerpta Med., Sect. VIII,3: 635. 1950. Chem. Abstr.49: 14193 a. 1955.Google Scholar
  25. 25.
    Callow, R. K., Cornforth, J. W., and Spensley, P. C. Source of hecogenin. Chem. and Ind., 1951: 699-700. Chem. Abstr.46: 2556 d. 1952.Google Scholar
  26. 26.
    -and James, V. H. T. Epimeriza-tion at C-25 of steroid sapogenins: Sarsasapogenin, neotigogenin, and sisal-agenin. Jour. Chem. Soc. 1955: 1671-4. Chem. Abstr.50: 7118 c. 1956.Google Scholar
  27. 27.
    Castrillon, J. A. Cactus alkaloids-II. Condensation of mescaline with formaldehyde by the Eschweiler-Clarke reaction. Jour. Am. Chem. Soc.74: 558–9. 1952.CrossRefGoogle Scholar
  28. 28.
    Cercos, A. P. Antibacterial activity of vinaline, alkaloid ofProsopis ruscifolia. Rev. Argentina Agron.18: 200–9, 1951. Chem. Abstr.46: 11311 d. 1952.Google Scholar
  29. 29.
    Clarke, O. M. Geochemical prospecting for copper at Ray, Arizona. Econ. Geol.48: 39–45. 1953. Chem. Asbtr. 48: 11990 b. 1954.Google Scholar
  30. 30.
    Colla, C. Degradation and oxidation of cholesterol and its derivatives by some schizomycetes. Ann. Microbiol.5: 207–31. 1953. Chean. Abstr.48: 7700 b. 1954.Google Scholar
  31. 31.
    Constantinides, P., Cairns, A., and Werner, A. Antilipemic activity of sulfated polysaccharides. Arch. Intern. Pharmacodynamie99: 334–45. 1954. Chem. Abstr.49: 6453 c. 1955.Google Scholar
  32. 32.
    Correll, D. S., Schubert, B. G., Gentry, H. S., and Hawley, W. O. The search for plant precursors of cortisone. Econ. Bot.9: 307–75. 1955.Google Scholar
  33. 33.
    Cramer, F. B. Improved isolation of 1-Arabinose from mesquite gum. J. Franklin Institute256: 93–4. 1953. Chem. Abstr.48: 4445 a. 1954.CrossRefGoogle Scholar
  34. 34.
    Cravioto, R. O., Massieu, G. H., Garcia, J. Guzman, and de la Torre, J. C. Nutritive value of food plants from Yucatan. Boll. Ofic. Sanit. Panamer.31: 328–39. 1952. Chem. Abstr.46: 7673f. 1952.Google Scholar
  35. 35.
    Cruse, R. R. A chemurgic survey of the desert flora in the American Southwest. Econ. Bot.3: 111–31. 1949.Google Scholar
  36. 36.
    Cruse, R. R. Unpublished observations.Google Scholar
  37. 37.
    Cuevas, E. I. Photosensitizing agents from plants. Fac. Quim y Farm., Tesis Quim.3: 122–34. 1951. Chem. Abstr.48: 6079 d. 1954.Google Scholar
  38. 38.
    Czaja, A. Th. Effect of trace elements on the development of yucca plants. Ber. Deutsch. Botan. Ges.62: 13–20. 1949. Chem. Abstr.44: 6922 b. 1950.Google Scholar
  39. 39.
    —. Some fertilizing experiments with yucca. Angew. Botan.26: 13–32. 1951. Chem. Abstr.48: 926 h. 1954.Google Scholar
  40. 40.
    —. Influence of fertilizing on the fiber formation of yucca. Materiae Vege-tabiles (The Hague)1: 75–106. 1952. Chem. Abstr.47: 810b. 1953.Google Scholar
  41. 41.
    Daugherty, P. M., Sineath, H. H., and Wastler, T. A. Industrial raw materials of plant origin IV. A survey ofSim-mondsia chinensis (Jojoba). Bull. Eng. Expt. Sta., Georgia Inst. Technol. XV, No. 13 (Bulletin no. 17): 1–36. 1953.Google Scholar
  42. 42.
    —, —, and —. Industrial raw materials of plant origin. III. A survey of candelilla and candelilla wax. Bull. Eng. Expt. Sta., Georgia Inst. Techn. XV, No. 12 (Bulletin no. 16): 1–56. 1953.Google Scholar
  43. 43.
    Delay, J., Gerard, H. P., and Thuiller, J. Acute toxicity of mescaline sulfate and antidote action of sodium succinate. Compt. Rend. Soc. Biol.144: 163. 1950. Chem. Abstr.44: 10152 i. 1950.Google Scholar
  44. 44.
    Dessi, P. Photometric determination of mescaline and sympamine with Richter's Reagent. Farm. Sci. e. Tec.56: 32–8. 1950. Chem. Abstr.44: 5420 i. 1950.Google Scholar
  45. 45.
    Diaz, G., Zaffaroni, A., Rosenkranz, G., and Djerassi, C. Steroidal sapogenins. XXI. Identification by the absorption spectra of their sulfuric acid chromogens. J. Org. Chem.17: 747–50. 1952. Chem. Abstr.46: 9984 i. 1952.CrossRefGoogle Scholar
  46. 46.
    Djerassi, C, Frick, N., and Geller, L. E. Alkaloid studies. I. The isolation of pilo-cereine from cactusLophocereus sohotti. Jour. Am. Chem. Soc.75: 3632–5. 1953.CrossRefGoogle Scholar
  47. 47.
    —, Geller, L. E., and Lemin, A. J. Terpenoids. I. The triterpenes of the cactusLemaireocereus thurberi. Jour. Am. Chem. Soc.75: 2254–6. 1953.CrossRefGoogle Scholar
  48. 48.
    —, McDonald, R. M. and —. Terpenoids. III. The isolation of ery-throdiol, oleanolic acid, and a new triter-pene triol, longispinogenin, from the cactusLemaireocereus longispinus. Jour. Am. Chem. Soc.75: 5940–2. 1953.CrossRefGoogle Scholar
  49. 49.
    —, Farkas, E., Lemin, A. J., Collins, J. C, and Walls, F. Terpenoids. VI. Dumortierigenin, a new triterpene lac-tone from the cactusLemaireocereus dumortieri. Jour. Am. Chem. Soc.76: 2969–73. 1954.CrossRefGoogle Scholar
  50. 50.
    —, Smith, C. R., Marfey, S. P., McDonald, R. N., Lemin, A. J., Figdor, S. K., and Estrada, H. Alkaloid studies. III. Isolation of pilocereine and an-halonidine from four cactus species. Jour. Am. Chem. Soc.76: 3215–17. 1954.CrossRefGoogle Scholar
  51. 51.
    —, Geller, L. E., and Lemin, A. J. Terpenoids. VIII. The structures of the cactus triterpenes gummosogenin and longispinogenin. Jour. Am. Chem. Soc.76: 4089–91. 1954.CrossRefGoogle Scholar
  52. 52.
    —, and Thomas, G. H. Terpenoids. XII. Constitution of the cactus triterpene cochalic acid. Chem. and Ind. 1954: 1354. Chem. Abstr.49: 13173 b. 1955.Google Scholar
  53. 53.
    —, Liu, L. H., Lippman, A. E., Lemin, A. J., Geller, L. E., McDonald, R. N., and Taylor, B. J. Terpenoids. XI. Investigation of nine cactus species. Isolation of two new triterpenes, stellatogenin and machaeric acid. Jour. Am. Chem. Soc.77: 1200–3. 1955.CrossRefGoogle Scholar
  54. 54.
    —, and Lippman, A. E. Terpenoids. XIII. The structures of the cactus triterpenes machaeric acid and tnachaerinic acid. Jour. Am. Chem. Soc.77: 1824–8. 1955.Google Scholar
  55. 55.
    —, Thomas, G. H., and Monsimer, H. Terpenoids. XVI. The constitution of the cactus triterpene cochalic acid. Partial reductions of methyl diketoechinocystate. Jour. Am. Chem. Soc.77: 3579–82. 1955.CrossRefGoogle Scholar
  56. 56.
    —, Farkas, E., Liu, L. H., and Thomas, G. H. Terpenoids. XVII. The cactus triterpenes thurberogenin and stellatogenin. Jour. Am. Chem. Soc.77: 5330–6. 1955.CrossRefGoogle Scholar
  57. 57.
    —, Figdor, S. K., Bobbit, J. M., and Markley, F. X. Alkaloid studies. XIV. The structure of the cactus alkaloid pilocereine. Jour. Am. Chem. Soc.78: 3861–2. 1956.CrossRefGoogle Scholar
  58. 58.
    —, Nakano, T., and Bobbit, J. M. Alkaloid studies. XX. Isolation and structure of two new cactus alkaloids, piloceredine and lophocereine. Tetrahedron.2: 58–63. 1958.CrossRefGoogle Scholar
  59. 59.
    —, Mills, J. S, and Villotti, R. The structure of the cactus sterol lophenol. A link in sterol biogenesis. Jour. Am. Chem. Soc.80: 1005–6. 1958.CrossRefGoogle Scholar
  60. 60.
    — and —. Terpenoids. XXXII. The structure of the cactus triterpene treleasegenic acid. Ring conformational alterations in a pentacyclic triterpene. Jour. Am. Chem. Soc.80: 1236–43. 1958.CrossRefGoogle Scholar
  61. 61.
    Duisberg, P. C. Development of a feed from the creosote bush and the determination of its feed value. Jour. Animal Sci.11: 174–80. 1952. Chem. Abstr.46: 6284 a. 1952.Google Scholar
  62. 62.
    —. Desert plant utilization. Texas Jour, of Sci.4: 269–83. 1952.Google Scholar
  63. 63.
    —. Some relationships between xero-phytism and the content of resin, nordi-hydroguariaretic acid and protein ofLarrea divertica (Greasewood). Plant Physiol.27: 769–77. 1952. Chem. Abstr.47: 1796 a. 1953.PubMedCrossRefGoogle Scholar
  64. 64.
    -. Chemical components of useful or potentially useful desert plants of North America and the industries derived from them. Proc. Intern. Symposium Desert Res. Jerusalem. 1952: 281-94. Chem. Abstr.48: 911 a. 1954.Google Scholar
  65. 65.
    Elder, W. C. Better checkmates for brush. Southern Seedsman17, No. 7: 32. 1954. Chem. Abstr.49: 2664 f. 1955.Google Scholar
  66. 66.
    Evans, L. G., Stiles, R. E., and Cruse, R. R. U. S. Bureau of Mines, Tucson, Arizona. Unpublished observations.Google Scholar
  67. 67.
    Fernandez, A. C. Industrial utilization ofOpuntia ficus-indica. 10th Congr. Intern. Ind. Agr. y. Aliment. Madrid. 1954: 1078-88. Chem. Abstr.50: 15000 f. 1956.Google Scholar
  68. 68.
    Fisher, C. E. Fults, J. L., and Hopp, H. Factors affecting action of oils and water-soluble chemicals in mesquite eradication. Ecol. Monographs16: 109–26. 1946. Chem. Abstr.44: 10240 i. 1950.CrossRefGoogle Scholar
  69. 69.
    Fitzpatrick, F. K. Plant substances active against Mycobacterium tuberculosis. Antibiotics and Chemotherapy4: 528–36. 1954. Chem. Abstr.48: 13800 a. 1954.Google Scholar
  70. 70.
    Fletcher, H. G. The sweet herb of Paraguay. Chemur. Dig.14, Nos. 7 & 8: 7, 18. July-August, 1955. Anon. Sweetest of all. Chem. and Eng. News34: 124. Jan. 9, 1956.Google Scholar
  71. 71.
    Fontán Candela, J. L. and Palasi, V. Vilar. Studies on saponins. III. Fractionation of saponin-containing extracts by differential foaming and assay by the method of hemolysis. Anales Real Soc. Espana Fís. y Quím.48B: 143–8. 1952. Chem. Abstr.46: 6334 f. 1952.Google Scholar
  72. 72.
    Fortmann, G. D. Process for production of fibers. U. S. Patent No. 2,561,617, July 24, 1951, assigned to Flortex Fiber Corporation.Google Scholar
  73. 73.
    Garcia, F. - Proc. 8th Pac. Sci. Cong. Nat. Res. Coun. Philippines IV A 182. 1924.Google Scholar
  74. 74.
    —. —. Jour. Philippine Med. Assn.20: 359. 1940.Google Scholar
  75. 75.
    —. Distribution and deterioration of the insulin-like principle inLagerstroemia speciosa (Banaba). Acta Med. Philippina.3: 99–104. 1941. Chem. Abstr.36: 5606. 1942.Google Scholar
  76. 76.
    —. Distribution of insulin-like principle in different plants and its there-peutic application to a few cases of diabetes mellitus. Philippine Jour. Sci.76: 3. 1944.Google Scholar
  77. 77.
    —. Plantisul tablets in the treatment of diabetes mellitus. Jour. Phillippine Med. Assn.31: 216–24. 1955.Google Scholar
  78. 78.
    Guatier, J. and Bui, X-N. Preparation of fibers from sisal and pineapple by crushing with or without subsequent retting. Bull. Inst. Textile France No. 39: 39–47. 1953. Chem. Abstr.47: 11740d. 1953.Google Scholar
  79. 79.
    Gaver, K. M., Lasure, E. P., and Thomas, L. M. Reaction of glucopyranose polymers with substituted ammonium hydroxides. U. S. Patent No. 2,563,526, August 7, 1951. Assigned to the Keever Starch Co.Google Scholar
  80. 80.
    Gedeon, J. and Kincl, F. A. Steroid sapo-genins from Indian agave species. Arch. Pharm.286: 317–9. 1953. Chem. Abstr.48: 11004f. 1954.CrossRefGoogle Scholar
  81. 81.
    Giral, F. and Medrano, E. The amount of vitamin C in drugs. Ciencia (Mexico)12: 225–7. 1953. Chem. Abstr.47: 10810e. 1953.Google Scholar
  82. 82.
    Glendenning, G. E. and Paulsen, H. A. Recovery and viability of mesquite seeds fed to sheep receiving 2,4-D in drinking water. Botan. Gaz.1ll: 486–91. 1950.CrossRefGoogle Scholar
  83. 83.
    Gruewell, C. and Preene, F. H. E. Anti-diabetic substance. U. S. Patent No. 2,082,952, June 8, 1937. Assigned to Research Agency Corp.Google Scholar
  84. 84.
    Hassall, C. H. Medicinal products from tropical plants. Mfg. Chemist26: 494–6. 1955. Chem. Abstr.50: 3709d. 1956.Google Scholar
  85. 85.
    Heifetz, H. Set for sarsasapogenin. Chemical Week79, No. 4: 12. July 28, 1956.Google Scholar
  86. 86.
    Heitz, S., Lapin, H., Sannie, C. and Barcheivitz, P. Sapogenins containing a sterol nucleus. IV. The genus of agaves and yuccas grown in France. Chromatographic analysis and infrared adsorption spectra. Bull. Soc. Chim. Biol.36: 227–36. 1954. Chem. Abstr.48: 10995 i. 1954.PubMedGoogle Scholar
  87. 87.
    Hepburn, J. A., Boericke, G. W., Ricketts, R., and Boone, E. D. Laboratory study of twenty drugs on normal human beings, with comments on their symptomatology and therapeutic use. Jour. Am. Inst. Homeopathy43: 73–80. 1950. Chem. Abstr.45: 9749a. 1951.Google Scholar
  88. 88.
    Hudson, C. S. Improvements in the preparation of 1-arabincse from mesquite gum. Jour. Am. Chem. Soc.73: 4038–9. 1951.CrossRefGoogle Scholar
  89. 89.
    Huxley, Aldous. The doors of perception. Harper, 1954.Google Scholar
  90. 90.
    Juarez, G. L. Yucca leaves as fodder. Agronomia (Peru)18, No. 73: 85–8. 1953. Chem. Abstr.48: 1602 f. 1954.Google Scholar
  91. 91.
    Knoepfler, N. B. and Vix, H. L. E. Review of chemistry and research potential ofSimnondsia chinensis (Jojoba) oil. Jour. Ag. and Food Chem.6: 118. 1958.CrossRefGoogle Scholar
  92. 92.
    Krider, M. M. and Wall, M. E. Steroidal sapogenins. V. Enzymatic hydrolysis of steroidal saponins. Jour. Am. Chem. Soc.74: 3201. 1952.CrossRefGoogle Scholar
  93. 93.
    —, Cordon, T. C., and Wall, M. E. Steroidal sapogenins XVI. Hydrolysis of 5a, 22a-spirostane glycosides by fungal saponases. Jour. Am. Chem. Soc.75: 3515–17. 1954.CrossRefGoogle Scholar
  94. 94.
    —, Branaman, J. R., and Wall, M. E. Steroidal sapogenins XVIII. Partial hydrolysis of steroidal saponins ofYuca schidigera. Jour. Am. Chem. Soc.77: 1238. 1955.CrossRefGoogle Scholar
  95. 95.
    Krishna, B. H. and Lakshminarayana, S. K. Semipilot-scale production of fructose syrup from agave stem. Jour. Sci. Ind. Res. 13B: 876–8. 1954. Chem. Abstr.49: 15268a, b. 1955.Google Scholar
  96. 96.
    Lathrop, E. C. and Nelson, G. H. The chemical composition of some leaf and bast fibers. TAPPI37: 99–103. 1954. Chem. Abstr.48: 6118 d. 1954.Google Scholar
  97. 97.
    Leach, Byron L. (Tulane Univ.). Private communication in address given before the San Antonio Section, Amer. Chem. Soc. 1957.Google Scholar
  98. 98.
    Leonti, F. Composition and nutritive value of prickly pear peels. Atti. Soc. Ital. Sci. Vet.8: 394–7. 1954. Chem. Abstr.49: 14125 e. 1955.Google Scholar
  99. 99.
    Lewis, Y. S., Bhatia, I. S., and Johar, D. S. Production of citric acid by fermentation using agave juice hydrolyzate as source of carbohydrate. Bull. Central Food Technol. Res. Inst, Mysore.4: 181. 1955. Chem. Abstr.50: 3703 f. 1956.Google Scholar
  100. 100.
    Lohani, B. K., Biswas, B., and Dhingra, D. R. Comparative study of agave fibers prepared by different methods. Jour. Proc. Inst. Chemists (India)24: Pt. 1, 39–47. 1952. Chem. Abstr.46: 8859 c. 1952.Google Scholar
  101. 101.
    McCall, G. L. and Zahnley, J. W. Control of noxious perennial grasses with the trichloroacetates. Kansas State Agr. Expt. Sta. Circ. 255: 3–8. 1949. Chem. Abstr.45: 4868 c. 1951.Google Scholar
  102. 102.
    McGuff, T. J. and Sawyer, R. W. Filter media. U. S. Patent No. 2,708,982, May 24, 1955.Google Scholar
  103. 103.
    Makoru, L. Hair restorer. Austrian patent No. 176,950. Dec. 10, 1953. Chem. Abstr.48: 1637b. 1954.Google Scholar
  104. 104.
    Marchal, J. G., Thomas, P. and Nicot, R. Phytomonas tumefaciens and growth factors forOpuntia vulgaris, Opuntia cha-guensis, andPelargonium zonale. Trav. Lab. Microbiol. Faculte' Pharm. Nancy.15: 78–101. 1947. Chem. Abstr.44: 10824c. 1950.Google Scholar
  105. 105.
    Marker, R. E., Wagner, R. B., Ulshafer, P. R., Wittbecker, E. L., Goldsmith, D. P. J., and Ruof, C. H. Sterols CLX. Sapogenins. 72. Steroidal sapogenins. Jour. Am. Chem. Soc.69: 2167–2230. 1947. Chem. Abstr.42: 1301c. 1948.CrossRefGoogle Scholar
  106. 106.
    Martin, J. P. and Aldrich, D. G. Influence of soil exchangeable-cation ratios on the aggregating effects of natural and synthetic soil conditioners. Soil Sci. Soc. Amer. Proc.19: 50–4. 1955. Chem. Abstr.49: 10556e. 1955.CrossRefGoogle Scholar
  107. 107.
    Miliĉiĉ, D. Protein Crystalloids inOpuntia inermis. Oesterr. Bot. Z.103: 365–75. 1956. Chem. Abstr.50: 16999i. 1956.CrossRefGoogle Scholar
  108. 108.
    Munier, R. and Macheboeuf, M. Micro-chromatography of the separation of alkaloids and of various biological nitrogen bases. Bull. Soc. Chem. Biol.31: 1144–62. 1949. Chem. Abstr.44: 10259h. 1950.Google Scholar
  109. 109.
    Munsell, H. E., Williams, L. O., Guild, L. P., Troescher, C. B., Nightingale, G., and Harris, R. S. Composition of food plants of Central Amer'ca. I. Honduras. Food Research14: 144–64. 1949. Chem. Abstr.44: 3l72d. 1950.PubMedGoogle Scholar
  110. 110.
    —, —, —, —, and Harris, R. S. Composition of food plants of Central America. V. Nicaragua. Food Res.14: 355–65. 1950. VI. Costa Rica. Ibid. 379–404. Chem. Abstr.45: 3523i. 1951.Google Scholar
  111. 111.
    Nakada, T. and Nisihara, K. Synthesis of anhalonium bases. I. Synthesis of carne-gine and pellotine methyl ether. Jour. Pharm. Soc. Japan.64: 74–6. 1944. Chem. Abstr.45: 2955h. 1951.Google Scholar
  112. 112.
    Ogata, Y. Physiological study of the loquat fruits during storage. Tech. Bull. Kagawa Agr. Coll. 1 (3): 42–55. 1950. Chem. Abstr.46: 7673f. 1952.Google Scholar
  113. 113.
    Orloff, H. D. and Jolly, J. G. Manufacture of 2,4,5-trichlorophenoxyacetic acid. U. S. Patent No. 2,674,623. April 6, 1954. Assigned to Ethyl Corporation.Google Scholar
  114. 114.
    Paris, R. Flavonoside from flowers ofOpuntia vulgaris. Compt. Rend.233: 90–25. 1951. Chem. Abstr.45: 9807f. 1951.Google Scholar
  115. 115.
    Penfold, A. R. and Morrison, F. R. Use of prickly pear in the treatment of diabetes, and the preparation of a concentrated extract. Jour. Proc. Sydney Tech. Coll. Chem. Soc.5: 51-3. Chem. Abstr.27: 37542. 1933.Google Scholar
  116. 116.
    Powell, C. E. and Chen, K. K. Pilocereine, a cactus alkaloid. Jour. Am. Pharm. Assn.45: 559–61. 1956. Chem. Abstr.50: 15944f. 1956.CrossRefGoogle Scholar
  117. 117.
    Raymond, W. D., Thorpe, E. F. J., and Ward, J. B., Sisal wax from Kenya. Colonial plant and animal products (London) 5 (1): 58–61. 1955. Chem. Abstr.50: 587i. 1956.Google Scholar
  118. 118.
    Reti, L. Cactus alkaloids and some related compounds. Fortschr. Chem. Org. Naturstoffe6: 242–89. 1950. Chem. Abstr.45: 693f. 1951.Google Scholar
  119. 119.
    — and Castrillon, J. A. Cactus alkaloids. I. Trichocereus terscheckii (Par-mentier) Britton and Rose. Jour. Am. Chem. Soc.73: 1767–9. 1951.CrossRefGoogle Scholar
  120. 120.
    -. The alkaloids. Academic Press. 1954.Google Scholar
  121. 121.
    Rothmann, E. S, Wall, M. E., and Eddy, C. R. Steroidal sapogenins. III. Structure of steroidal saponins. Jour. Am. Chem. Soc.74: 4013–6. 1952.CrossRefGoogle Scholar
  122. 122.
    —, —, and Walens, H. A. Steroidal saponins. Jour. Am. Chem. Soc.74: 5791–2. 1952.CrossRefGoogle Scholar
  123. 123.
    —, —, and Eddy, C. R. Steroidal sapogenins. XL Steroidal C-ring lactones. Jour. Am. Chem. Soc.76: 527–32. 1954.CrossRefGoogle Scholar
  124. 124.
    - and -. Extraction of saponins fromYucca baccata. U. S. Patent No. 2,715,122, Aug. 9, 1955. Assigned to the U. S. A., as represented by the Sec. of Agric.Google Scholar
  125. 125.
    Sánchez-Marroquín, A. Studies of the Microbiology of pulque. VI. Additional biochemical and serological data on the leuconostoc species present. Anales Es-cuela Nacl. Cienc. Biol. Mex.6: 7–17. 1949. Chem. Abstr.46: 7169a. 1952.Google Scholar
  126. 126.
    — and Hope, P. H. Fermentation and chemical composition studies of some species of agave juice. Jour. Ag. and Food Chem. 1: 246–9. 1953.CrossRefGoogle Scholar
  127. 127.
    Sannie, C. and Lapin, H. Sapogenins with a steroid nucleus. Identification of sapogenins from small quantities of plants. Bull. Soc. Chim. France. 1952: 1080-5. Chem. Abstr.47: 6606f. 1953.Google Scholar
  128. 128.
    Satyanarayana, M. N. and Bhatia, I. S. Pectinlike substance from the stem ofAgave vera cruz. Bull. Cent. Food Technol. Res. Inst., Mysore4: 209–10. 1955. Chem. Abstr.50: 12351a. 1956.Google Scholar
  129. 129.
    Sen, A. and Singh, D. Changes in soil associated with the growth of cactus. Jour. Ind. Soc. Soil Sci.3: 7–13. 1955. Chem. Abstr.50: 2104f 1956.Google Scholar
  130. 130.
    Smith, F. Constitution of mesquite gum. III. The structure of the monomethyl glucuronic acid component. Jour. Chem. Soc. 1951: 2646-52. Chem. Abstr.46: 8011i. 1952.Google Scholar
  131. 131.
    Spensley, P. C. Cortisone from commonwealth sisal? Chemist and Druggist158: 84–6. 1952. Chem. Abstr.47: 820 g. 1953.Google Scholar
  132. 132.
    -. A source of hecogenin. Chem. and Ind. 1952: 46-8. Chem. Abstr.47: 3324 h. 1953.Google Scholar
  133. 133.
    Srinivasan, M., Bhalerao, V. R., and Subramanian, N.Agave vera cruz, a source of polyfructosans. Current Sci. India21 (6): 159–60. 1952. Chem. Abstr.47: 1863 d. 1953.Google Scholar
  134. 134.
    — and Bhatia, I. S. Carbohydrates ofAgave vera cruz. Biochem. Jour. (London)55: 350–60. 1953. Chem. Abstr.48: 234 e. 1954.Google Scholar
  135. 135.
    — and —. Carbohydrates ofAgave vera cruz Mill. II. Distribution in the stem, and pole. Biochem. Jour. (London)56: 256–9. 1954. Chem. Abstr.48: 5300 d. 1954.Google Scholar
  136. 136.
    Stephanus, H. and Rinse, J. Alkali treatment of agave and manila hemp fibers to produce flexible fibers. U. S. Patent No. 2,591,315. April 1, 1952. Also, Dutch Patent No. 69,149. Dec. 15, 1951. Assigned to J. Rinse and W. Dorst.Google Scholar
  137. 137.
    Stiles, R. E. U. S. Bur. of Mines, Tucson, Arizona. Private communicationGoogle Scholar
  138. 138.
    Takeda, K., Okanishi, T., and Shimaoka, A. Studies on the steriodal components of domestic plants IV. Constituenfs of yucca species.1. Pharm. Bull. Japan2: 178–82. 1954. Chem. Abstr.50: 1061 d. 1956.Google Scholar
  139. 139.
    —, —, and —. Steroidal components of domestic plants. Constituents of agave species. Pharm. Bull. Japan2: 182–5. 1954. Chem. Abstr.49: 14924 g. 1955.Google Scholar
  140. 140.
    -, -, and -. Steroidal components of the medicinal plants. IX. Constituents ofAgapanthus umbellatus. Ann. Rept. Shionogi Res. Lab. No. 5: 107-8. 1955. Chem. Abstr.50: 15916 b. 1956.Google Scholar
  141. 141.
    Taylor, A., McKenna, G. F., and Burlage, H. M. Cancer chemotherapy experiments with plant extracts. Texas Repts. Biol. Med.10: 1062–74. 1952. Chem. Abstr.47: 12661 h. 1953.Google Scholar
  142. 142.
    Thieme, J. G. Progress and possibilities of the sisal industry. Textilpraxis7: 3–5. 1952. Chem. Abstr.46: 7776 f. 1952.Google Scholar
  143. 143.
    Ueda, H. and Sasaki, T. Plants ofDioscorea species. J. Pharm. Soc. Japan.76: 745–6. 1956. Chem. Abstr.51: 228 f. 1957.Google Scholar
  144. 144.
    Van Dyk, J. C. Alkaline treating method for obtaining ramie and other fibers. U. S. Patent No. 2,651,571. Sept, 8, 1953. Assigned to H. E. and L. P. St. John.Google Scholar
  145. 145.
    Wagner, R. B., Forker, R. F., and Spitzer, P. F. The 9, 12-keto steroidal sapogenins. Jour. Am. Chem. Soc.73: 2494–7. 1951.CrossRefGoogle Scholar
  146. 146.
    Walens, H. A., Turner, A., and Wall, M. E. Use of sulfuric acid in the detection and estimation of steroidal sapogenins. Anal. Chem.26: 325–9. 1954.CrossRefGoogle Scholar
  147. 147.
    —, Serota, S., and Wall, M. E. Steroidal sapogenins. XXXI. Gentrogenin and correllogenin, new sapogenins fromDioscorea spiculiflora. Jour. Am. Chem. Soc.77: 5196–7. 1955.CrossRefGoogle Scholar
  148. 148.
    Wall, M. E., Krider, M. M., Rothmann, E. S., and Eddy, C. R. Steroidal sapogenins. I. Extraction, isolation, and identification. Jour. Biol. Chem.198: 533–43. 1952.Google Scholar
  149. 149.
    —, Eddy, C. R., McClennan, M. L., and Klump, M. E. Detection and estimation of steroidal sapogenins in plant tissue. Anal. Chem.24: 1337–41. 1952.CrossRefGoogle Scholar
  150. 150.
    —, —, Serota, S., and Mininger, R. F. Steroidal sapogenins. VIII. Mar-kogenin (22b-spirostane-2ξ, 3β-diol.) A new sapogenin isolated from yucca. Jour. Am. Chem. Soc.75: 4437–40. 1953.CrossRefGoogle Scholar
  151. 151.
    —, Krider, M. M., Krewson, C. F. Eddy, C. R. Willaman, J. J., Correll, D. S., and Gentry, H. S. Steroidal sapogenins. VII. Survey of plants for steroidal sapogenins and other constituents. Jour. Am. Pharm. Assoc. (Sci. Ed.)43: 1–7. 1954. Chem. Abstr.48: 3639h. 1954.Google Scholar
  152. 152.
    —. Eddv, C. R., Willaman. J. J., Correll, D. S., and Gentry, H. S. Steroidal sapogenins. XII. Survey of plants for steroidal sapogenins and other constituents. Jour. Am. Pharm. Assoc. (Sci. Ed.)43: 503–5. 1954.Google Scholar
  153. 153.
    —, —, and Serota, S. Steroidal sapogenins. XIX. Stereochemistry of sapogenins and cholesterol at carbon 20. Jour. Am. Chem. Soc.76: 2849–50. 1954.CrossRefGoogle Scholar
  154. 154.
    — and Serota, S. Steroidal sapogenins XX. Configuration of spiroketal side chain at carbon 22. Jour. Am. Chem. Soc.76: 2850–2. 1954.CrossRefGoogle Scholar
  155. 155.
    - and Krider, M. M. Enzymatic hydrolysis of steroidal saponins. U. S. Patent No. 2,686,752. Aug. 17, 1954. Assigned to the U. S. A. as represented by the Sec. of Agric.Google Scholar
  156. 156.
    - and -. Purification and separation of sapogenins by adsorption. U. S. Patent No. 2,711,408. June 21, 1955. Assigned to the U. S. A. as represented by the Sec. of Agric.Google Scholar
  157. 157.
    -. Isolation of sapogenins. U. S. Patent No. 2,719,845. Oct.4, 1955. Assigned to the U. S. A. as represented by the Sec. of Agric.Google Scholar
  158. 158.
    —, Fenske, C. S., Willaman, J. J., Corell, D. S. Schubert, B. G. and Gentry, H. S. Steroidal sapogenins XXXV. Survey of plants for steroidal sapogenins and other constituents. Jour. Am. Pharm. Assoc.44: 438–40. 1955. Chem. Abstr.49: 13599d. 1955.CrossRefGoogle Scholar
  159. 159.
    Walsh, C. L., Hawes, W. B., and Fculger, F. Method of soil stabilization. U. S. Patent No. 2,661,297. Dec.1, 1953. Assigned to A.S.P. Chemical Co., Ltd.Google Scholar
  160. 160.
    Walters, M. M. The effects of seasons and years on the nutrient content of spineless cactus leaves picked for feeding purposes. Union S. Africa Dept. Agr. Sci. Bull. No. 330: 5-34. 1951. Chem. Abstr.47: 4001 f. 1953.Google Scholar
  161. 161.
    Wasicky, R. and Hoehme, W. The crude saponin content of some Brazilian plants. Anais Faculdade Farm. e. Odontol, Univ, Sao Paulo9: 17–26. 1951. Chem. Abstr.46: 10548e. 1952.Google Scholar
  162. 162.
    Wilder, E. A. and Kitzke, E. D. Waxy constituents of the Saw Palmetto,Sere-naa repens (Bartr.) Small. Science,120: 108–9. 1954.PubMedCrossRefGoogle Scholar
  163. 163.
    Willaman, J. J., Fenske, C. S., and Correll, D. S. Occurrence of alkaloids in dioscorea. Science118: 329–30. 1953.PubMedCrossRefGoogle Scholar
  164. 164.
    — and Schubert, B. G. Alkaloid hunting. Econ. Bot.9: 141–50. 1955.Google Scholar
  165. 165.
    — and Wadley, F. M. Steroidal sapogenins. XXXVII. Association of saponins and unsaturated sterols in agave, dioscorea, and yucca. Arch. Biochem. and Biophys.62: 238–40. 1956 Chem. Abstr.50: 10988b. 1956.CrossRefGoogle Scholar
  166. 166.
    Woodward, R. B., Bader, F. E., Bickel, H., Frey, A. J., and Kierstead, R. W. Total synthesis of reserpine. Tetrahedron2: 1–57. 1958. Chem. Abstr.52: 11870f. 1958.CrossRefGoogle Scholar
  167. 167.
    Young, D. W. Toxicity and transloca-tion of herbicides. Iowa State Coll. Jour. Sci.28: 424–5. 1954. Chem. Abstr.48: 11706i. 1954.Google Scholar
  168. 168.
    Zaragoza, L. P. Invert sugar from honey mesquite. Spanish Patent No. 199,662. July 1, 1953. Chem. Abstr.49: 1353c. 1955.Google Scholar
  169. 169.
    Bhatia, I. S., Satyanarayana, M. N., and Srinivasan, M. Carbohydrates ofAgave vera cms. Current Sci. (India)22: 16–17. 1953. Chem. Abstr.47: 6503i. 1953.Google Scholar
  170. 170.
    Dickenson, R. W. Soil conditioning agents of desert plant origin and their use. U. S. Patent No. 2,658,824. Nov. 10, 1953.Google Scholar
  171. 171.
    Huisman, H. O., Smit, A., and Meltzer, J. Investigation of organic insecticides I. Preparation and insecticidal properties of some substituted polyenamides. Rec. Trav. Chem.77: 97–102. 1958. Chem. Abstr.52: 13665b. 1958.Google Scholar
  172. 172.
    Gaylor, P. J. Russian helioboiler for use in fruit cannery. Gaylor Tech. Survey. June 8, 1946.Google Scholar

Copyright information

© The New York Botanical Garden 1959

Authors and Affiliations

  • Robert R Cruse
    • 1
  1. 1.Southwest Research Institute San AntonioTexas

Personalised recommendations