Advertisement

The Botanical Review

, Volume 25, Issue 2, pp 351–384 | Cite as

Mitosis and metabolic organization

  • Herbert Stern
Article

Keywords

Botanical Review Sulfhydryl Sulfhydryl Group Interphase Nucleus Mitotic Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Alfert, M. 1957.In: McElroy, W. D., and B. Glass [ed.] The chemical basis of heredity, [p. 198].Google Scholar
  2. 2.
    Allfrey, V. G., A. E. Mirsky, andH. Stern. 1955. The chemistry of the cell nucleus. Adv. Enzymol.16: 411–500.Google Scholar
  3. 3.
    Anderson, N. G. 1956. Cell division. I. Quart. Rev. Biol.31: 169–199.CrossRefGoogle Scholar
  4. 4.
    Bailey, I. W. 1954. Contributions to plant anatomy. Chron. Bot. 15: 259 pp.Google Scholar
  5. 5.
    Bajer, A. 1954. Cine-micrographic studies on mitosis in endosperm. I. Acta Soc. Bot. Polon.23: 382–412.Google Scholar
  6. 6.
    Baker, J. R. 1953. The cell theory: A restatement, history and critique. IV. Quart. Jour. Micr. Sci.94: 407–440.Google Scholar
  7. 7.
    Bendich, A., H. B. Pahl, andG. B. Brown. 1957. Chromatographic fractionation ofE. coli DNA containing 5-bromouracil-2-C14.In: McElroy, W. D., and B. Glass [ed.] The chemical basis of heredity. [p. 378–396].Google Scholar
  8. 8.
    Benoit, J., P. Leroy, C. Vendrely, andR. Vendrely. 1957. Des mutations somatiques dirigées sont-elles possibles chez les oiseaux? Compt. Rend. Acad. Sci. [Paris]244: 2320–2321.Google Scholar
  9. 9.
    Bloch D. P., andG. C. Goodman. 1955. Evidence of differences in the deoxyribonucleoprotein complex of rapidly proliferating and non-dividing cells. Jour. Biophys. & Biochem. Cytol.1: 530–550.Google Scholar
  10. 10.
    Boss, J. 1954. Mitosis in cultures of new tissues. Exp. Cell Res.7: 443–456.PubMedCrossRefGoogle Scholar
  11. 11.
    Brachet, J. 1950. Chemical embryology. [Trans. from the French by Lester G. Barth]. 533 pp.Google Scholar
  12. 12.
    Braun, A. C. 1957. A physiological study on the nature of autonomous growth in neoplastic plant cells. Symp. Soc. Exp. Biol.11: 132–142.Google Scholar
  13. 13.
    Brown, G. B. 1956. Pathways of nucleic acid bisynthesis. Fed. Proc.15: 823.PubMedGoogle Scholar
  14. 14.
    Bryan A. M. 1958. [Unpublished].Google Scholar
  15. 15.
    Bullough, W. S. 1952. The energy relations of mitotic activity. Biol. Revs. Cambridge Phil. Soc.27: 133–168.CrossRefGoogle Scholar
  16. 16.
    Caspersson, T. O. 1950. Cell growth and cell function: a cytochemical study. 185 pp.Google Scholar
  17. 17.
    Chevremont, M., andJ. Frederic. 1952. Evolution des chondriosomes lors de la mitose somatique. Arch. Biol.63: 259–272.Google Scholar
  18. 18.
    Cohen, S. S. 1956. Unbalanced growth and death.In: Graff, S. [ed.] Essays in biochemistry. [p. 77–84].Google Scholar
  19. 19.
    Conklin, E. G. 1924. Cellular differentiation.In: Cowdry, E. V. [ed.] General cytology, [p. 539–607].Google Scholar
  20. 20.
    Crick, F. H. C. 1957. The structure of DNA.In: McElroy, W. D., and B. Glass [ed.] The chemical basis of heredity. [p. 532–539].Google Scholar
  21. 21.
    Delbruck, M., andG. S. Stent. On the mechanism of DNA replication.In: McElroy, W. D., and B. Glass [ed.] The chemical basis of heredity. [p. 699–736].Google Scholar
  22. 22.
    Duncan, R. E., andP. S. Woods. 1953. Some cytological aspects of antagonism in synthesis of nuclei acid. Chromosoma6: 45–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Ephrussi, B. 1953. Nucleocytoplasmic relations in micro-organisms. 127 pp.Google Scholar
  24. 24.
    Erickson, R. O. 1947. Respiration of developing anthers. Nature. [London]159: 275–276.CrossRefGoogle Scholar
  25. 25.
    -, andD. R. Goddard. 1951. An analysis of root growth in biochemical terms. Growth Symp. No. 10: 89–116.Google Scholar
  26. 26.
    Firket, H., andW. G. Verly. 1958. Autoradiographic visualization of synthesis of deoxyribonucleic acid in tissue culture with tritium-labelled thymidine. Nature [London]181: 274–275.CrossRefGoogle Scholar
  27. 27.
    Foster, T. S., andH. Stern. 1958. Soluble deoxyribosidic compounds in relation to duplication of deoxyribonucleic acid. Science128: 653–654.PubMedCrossRefGoogle Scholar
  28. 28.
    -. 1959. The accumulation of soluble deoxyribosidic compounds in relation to nuclear division in anthers ofLilium longiflorum. Jour. Biophys. & Biochem. Cytol.Google Scholar
  29. 29.
    Gamow G. 1954. Possible relation between deoxyribonucleic acid and protein structure. Nature [London]173: 318.CrossRefGoogle Scholar
  30. 30.
    Gaulden, M. E., andR. P. Perry. 1958. Influence of the nucleus on mitosis as revealed by ultra-violet microbeam irradiation. Proc. Nat. Acad. Sci. [U.S.A.]44: 553–554.CrossRefGoogle Scholar
  31. 31.
    Green, M., andS. S. Cohen. 1957. Studies on the biosynthesis of bacterial and viral pyrimidines. Jour. Biol. Chem.225: 387–407.Google Scholar
  32. 32.
    Grossman, L., andG. R. Hawkins. 1957. The formation ot deoxyribonucleosides from ribonucleosides in extracts ofSalmonella typhimurium. Biochim. & Biophys. Acta26: 657–658.CrossRefGoogle Scholar
  33. 33.
    Grunberg-Manago, M., P. J. Oritz, andS. Ochoa. 1955. Enzymatic synthesis of nucleic acid-like polynucleotides. Science122: 907–910.PubMedCrossRefGoogle Scholar
  34. 34.
    Grun, P. 1956. Changes during interphase in nucleic acid and protein content ofTradescantia root tip nuclei. Exp. Cell Res.10: 29–39.PubMedCrossRefGoogle Scholar
  35. 35.
    Guttman, R., andA. Black. 1958. Effects of kinetin on cell division inParamecium caudatum. Nature [London]181: 852.CrossRefGoogle Scholar
  36. 36.
    HÄMMERLING, J. 1957. Nucleus and cytoplasm inAcetabularia. Compt. Rend. Seances et Rapp. et Communic. 8e Congr. Int. Bot. [Paris]. Sect.10: 87–103.Google Scholar
  37. 37.
    Hammett, F. S., andT. Lavine. 1940. Further localization of SHaction on cell multiplication. Growth4: 337–348.Google Scholar
  38. 38.
    Hase, E., Y. Morimura, andH. Tamiya. 1957. Some data on the growth physiology ofChlorella studied by the technique of synchronous culture. Arch. Biochem. & Biophys.69: 149–165.CrossRefGoogle Scholar
  39. 39.
    Hecht, L. I., V. R. Potter, andE. Herbert. 1954.In vitro phosphorylation of pyrimidine deoxyribose mononucleotides. Biochim. & Biophys. Acta15: 134–135.CrossRefGoogle Scholar
  40. 40.
    Heilbrunn, L. V. 1952. The physiology of cell division.In: Barron, E. S. G. [ed.] Modern trends in physiology and biochemistry. [p. 123–134].Google Scholar
  41. 41.
    Hoberman, H. D., andP. H. Peralta. 1952. Incorporation of N15 into nuclear proteins of rat liver. Fed. Proc.11: 231.Google Scholar
  42. 42.
    Hoffman-Berling, H. 1954. Die Bedeutung des Adenosine Triphosphate für die Zell-und Kernsteilungsbewegungen in der Anaphase. Biochim. & Biophys. Acta15: 226–236.CrossRefGoogle Scholar
  43. 43.
    Hoff-Jorgensen, E. 1951. A microbiological assay of deoxyribonucleosides and deoxyribonucleic acid. Biochem. Jour.50: 400–403.Google Scholar
  44. 44.
    Hopkins, F. G. 1932. Some aspects of biochemistry. Irish Jour. Med. Sci. VI. No. 79: 334–350.Google Scholar
  45. 45.
    Howard, A., andS. R. Pelc. 1951. Nuclear incorporation of P32 as demonstrated by autoriadiographs. Exp. Cell Res.2: 178–187.CrossRefGoogle Scholar
  46. 46.
    Hughes, A. 1952. The mitotic cycle. 232 pp.Google Scholar
  47. 47.
    Idelman, S. 1957. Existence d’un complexe lipidesnucleoprotéines à groupements sulfhydrilés au niveau du chromosome. Compt. Rend. Acad. Sci. [Paris]244: 1827–1828.Google Scholar
  48. 48.
    Jacobson, W., andM. Webb. 1952. The two types of nucleoprotein during mitosis. Exp. Cell Res.3: 163–183.CrossRefGoogle Scholar
  49. 49.
    Jensen, W. A. 1955. A morphological and biochemical analysis of the early phases of cellular growth in the root tip ofVicia faba. Exp. Cell Res.8: 506–522.PubMedCrossRefGoogle Scholar
  50. 50.
    Kessler, B. 1958. Effect of transmitted ribonucleic acid from healthy pear trees upon the synthesis and composition of protein. Nature [London]181: 201–202.CrossRefGoogle Scholar
  51. 51.
    Kornberg, A. 1956. Pathways of enzymatic synthesis of nucleotides and polynucleotides.In: McElroy, W. D., and B. Glass [ed.] The chemical basis of heredity. [p. 579–608].Google Scholar
  52. 52.
    La Cour, F. L., andJ. Chayen. 1958. A cyclic staining behaviour of the chromosomes during mitosis and meiosis. Exp. Cell Res.14: 462–468.PubMedCrossRefGoogle Scholar
  53. 53.
    — andS. R. Pelc. 1958. Effect of colchicine on the utilization of labelled thymidine during chromosomal reproduction. Nature [London]182: 506–508.CrossRefGoogle Scholar
  54. 54.
    Lederberg, J. 1957. Viruses, genes, and cells. Bact. Revs.21: 133–139.Google Scholar
  55. 55.
    L’Heritier, Ph. 1955. Les virus intégrés et l’unité cellulaire. L’Année Biol.31: 482–496.Google Scholar
  56. 56.
    Linderstrom-Lang, K. 1939. Distribution of enzymes in tissue and cells. Harvey Lect. Ser.34: 214–245.Google Scholar
  57. 57.
    Linskens, H. F. 1958. Physiologische Untersuchungen zur Reifteilung. Acta Bot. Neerl.7: 61–68.Google Scholar
  58. 58.
    Marre, E., andO. Arrigoni. 1957. Metabolie reactions to auxins. I. Physiol. Plant.10: 289–301.CrossRefGoogle Scholar
  59. 59.
    Mazia, D. 1957. Some problems in the chemistry of mitosisIn: McElroy, W. D., and B. Glass [ed.] The chemical basis of heredity. [p. 169–185].Google Scholar
  60. 60.
    — 1956. Materials for the biophysical and biochemical study of cell division. Ad. Biol. & Med. Phys.4: 69–118.Google Scholar
  61. 61.
    — andD. M. Prescott. 1954. Nuclear function and mitosis. Science120: 120–121.PubMedCrossRefGoogle Scholar
  62. 62.
    — andA. M. Zimmerman. 1958. SH compounds in mitosis. II. Exp. Cell Res.15: 138–153.PubMedCrossRefGoogle Scholar
  63. 63.
    Meves, F. 1918. Die Plastosomentheorie der Vererbung. Arch. Mikr. Anat.92: 41–136.CrossRefGoogle Scholar
  64. 64.
    Mellors, R. C., L. G. Ortega, A. Stoholski, andJ. Hlinka. 1957. Quantitative cytology and cytopathology. Exp. Cell Res.12: 560–567.PubMedCrossRefGoogle Scholar
  65. 65.
    Michaelis, P. 1954. Cytoplasmic inheritance inEpilobium and its theoretical significance. Adv. Genet.6: 288–402.Google Scholar
  66. 66.
    Miescher, F. 1897. Histochemischen und physiologischen Arbeiten. V.I. 543 p.Google Scholar
  67. 67.
    Mirsky, A. E. 1951. The chemical composition of chromosomes. Harvey Lect. Ser.46: 98–115.Google Scholar
  68. 68.
    — andH. Ris. 1951. The composition and structure of isolated chromosomes. Jour. Gen. Physiol.34: 475–492.CrossRefGoogle Scholar
  69. 69.
    Morin, G. A., F. Zajdela, andO. Costerousse. 1957. Metabolic heterogeneity of mouse liver deoxyribonucleic acid. Exp. Cell Res.13: 204–206.PubMedCrossRefGoogle Scholar
  70. 70.
    Nasatir, M. 1958. Ph.D. Thesis. Univ. Penn.Google Scholar
  71. 71.
    -, andH. Stern. 1958. Changes in activities of aldolase and d-glyceraldehyde dehydrogenase during the mitotic cycle in microspores ofLilium longiflorum. Ms. submitted for publication.Google Scholar
  72. 72.
    Nickerson, W. J., andG. Falcone. 1956. Identification of protein disulfide reductase as a cellular division enzyme. Science124: 722.PubMedCrossRefGoogle Scholar
  73. 73.
    Nordenskiold, E. 1929. The history of biology. [Trans. from the Swedish by Leonard Bucknall Eyre]. 629 pp.Google Scholar
  74. 74.
    Ochoa, S., andL. A. Heppel. 1957. Polynucleotide synthesis.In: McElroy, W. D. and B. Glass [ed.] The chemical basis of heredity. [p. 615–638].Google Scholar
  75. 75.
    Ogur, M. 1954. Respiration in a polyploid series ofSaccharomyces. Arch. Biochem. & Biophys.53: 484–490.CrossRefGoogle Scholar
  76. 76.
    Patau, K., N. K. Das, andF. Skoog. 1957. Induction of DNA synthesis by kinetin and indoleacetic acid in excised tobacco pith tissues. Physiol. Plant.10: 949–966.CrossRefGoogle Scholar
  77. 77.
    Pelc, S. R. 1957. On the connection between the synthesis of RNA and DNA in the testis of the mouse. Exp. Cell. Res.12: 320–324.PubMedCrossRefGoogle Scholar
  78. 78.
    Porter, K. R. 1954. Changes in cell fine structure accompanying mitosis.In: Int. Union Biol. Sci., B. No. 21: 170–190.Google Scholar
  79. 79.
    Prescott, D. M. 1955. Relations between cell growth and cell division. Exp. Cell Res.9: 328–337.PubMedCrossRefGoogle Scholar
  80. 80.
    — 1956. Relations between cell growth and cell division. III, Exp. Cell Res.11: 94–98.CrossRefGoogle Scholar
  81. 81.
    Puck, T. T. 1957. The mammalian cell as mciroorganism.In: Rudnick, D. [ed.] Rhythmic and synthetic processes in growth. [pp. 3–17].Google Scholar
  82. 82.
    Sable, H. Z., H. B. Wilber, A. E. Cohen, andM. R. Kane. 1954. Deoxyadenylic acid as acceptor for high energy phosphate. Biochim. & Biophys. Acta13: 156–157.CrossRefGoogle Scholar
  83. 83.
    Scherbaum, O. 1957. The content and composition of nucleic acids in normal and synchronously dividing mass cultures ofTetrahymena pyriformis. Exp. Cell Res.13: 24–30.PubMedCrossRefGoogle Scholar
  84. 84.
    Schneider, W. C. 1955. Deoxyribosides in animal tissues. Jour. Biol. Chem.216: 287–301.Google Scholar
  85. 85.
    — andL. W. Brownell. 1957. Deoxyribosidic compounds in regenerating liver. Jour. Nat. Cancer Inst.18: 579–586.Google Scholar
  86. 86.
    — andG. H. Hogeboom. 1956. Biochemistry of cellular particles. Ann. Rev. Biochem.25: 201–224.PubMedCrossRefGoogle Scholar
  87. 87.
    — andJ. Rotheram. 1958. Acid soluble tissue deoxynucleotides. Fed. Proc.17: 306.Google Scholar
  88. 88.
    Shimamura, T., andT. Ota. 1956. Cytochemical studies of the mitotic spindle and the phragmoplasts of plant cells. Exp. Cell Res.11: 346–361.PubMedCrossRefGoogle Scholar
  89. 89.
    —— andT. Hishida. 1957. Cytochemical studies on the mitotic spindle. Symp. Soc. Cell. Chem. [Tokyo]6: 21.Google Scholar
  90. 90.
    Stanley, W. M. 1957. The potential significance of nucleic acids and nucleoproteins of specific composition in malignancy. Texas Rep. Biol. & Med.15: 796–810.Google Scholar
  91. 91.
    Stern, H. 1956. The physiology of cell division. Ann. Rev. Plant Physiol.7: 91–114.CrossRefGoogle Scholar
  92. 92.
    — 1956. Sulfhydryl groups and cell division. Science124: 1292–1293.PubMedCrossRefGoogle Scholar
  93. 93.
    — 1958. Variations in sulfhydryl concentration during microsporocyte meiosis in anthers ofLilium andTrillium. Jour. Biophys. & Biochem. Cytol.4: 157–161.Google Scholar
  94. 94.
    -, 1958. Multiple functions of sulfur in mitosis.In: Symposium on sulfur in proteins.Google Scholar
  95. 95.
    — andP. L. Kirk. 1948. The oxygen consumption of the microspores ofTrillium in relation to the mitotic cycle. Jour. Gen. Physiol.31: 243–248.CrossRefGoogle Scholar
  96. 96.
    — andS. Timonen. 1955. Some factors in nuclear stimulation of mitochondrial oxidative phosphorylationsin vitro. Exp. Cell Res.9: 101–107.PubMedCrossRefGoogle Scholar
  97. 97.
    Stich, H. 1954. Stoffe und Strömungen in der Spindel vonCyclops strenuus. Chromosoma6: 199–236.PubMedCrossRefGoogle Scholar
  98. 98.
    Sugino, Y. 1957. Deoxycytidine diphosphate choline. A new deoxyriboside compound. Jour. Amer. Chem. Soc.79: 5074–5075.CrossRefGoogle Scholar
  99. 99.
    Swann, M. M. 1957. The control of cell division: A review. Cancer Res.17: 727–758.PubMedGoogle Scholar
  100. 100.
    Swift, H. 1953. Nucleoproteins in the mitotic cycle. Texas Rep. Biol. & Med.11: 755–774.Google Scholar
  101. 101.
    Taylor, J. H., P. S. Woods, andW. L. Hughes. 1957. The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labelled thymidine. Proc. Nat. Acad. Sci. [Wash.]43: 122–128.CrossRefGoogle Scholar
  102. 102.
    — andS. H. Taylor. 1953. The autoradiograph—A tool for cytogeneticists. Jour. Hered.44: 129–132.Google Scholar
  103. 103.
    Vincent, W. S. 1957. Heterogeneity of nuclear ribonucleic acid. Science126: 306–307.PubMedCrossRefGoogle Scholar
  104. 104.
    Voegtlin, C., andH. W. Chalkley. 1930. The chemistry of cell division. U. S. Pub. Health Rep.45: 3041–3063.Google Scholar
  105. 105.
    Warburg, O. 1913. Arch. Ges. Physiol.154: 599. [From Lardy, H. A. [ed.] Respiratory enzymes 1950. p. 277.]CrossRefGoogle Scholar
  106. 106.
    — 1956. On respiratory impairment in cancer cells. Science124: 269–270.PubMedGoogle Scholar
  107. 107.
    Wardlaw, C. W., andG. C. Mitra. 1958. Responses of a fern apex to gibberellic acid, kinetin, and a-naphthalene acetic acid. Nature [London]181: 400–401.CrossRefGoogle Scholar
  108. 108.
    Waris, H. 1950. Cytophysiological studies onMicrasterias. II. Physiol. Plant.3: 236–246.CrossRefGoogle Scholar
  109. 109.
    — andP. Kallio. 1957. Morphogenetic effects of chemical agents and nucleo-cytoplasmic relations inMicrasterias. Ann. Acad. Sci. Fenn. A. IV. Biol.37: 3–15.Google Scholar
  110. 110.
    Watson, J. D., andF. H. C. Crick. 1953. Molecular structure of nucleic acids. Nature [London]171: 737–738.CrossRefGoogle Scholar
  111. 111.
    White, J. 1954. Yeast technology. 431 pp.Google Scholar
  112. 112.
    Whitehead, A. N. 1925. Science and the modern world. 212 pp.Google Scholar
  113. 113.
    Wiener, N. 1954. The human use of human beings. 2nd ed.Google Scholar
  114. 114.
    Wilson, E. B. 1928. The cell in development and heredity. 1232 pp.Google Scholar
  115. 115.
    Zagury, D. 1957. Existence d’un complexe liporibonucléoprotidique à groupements sulfhydrilés au sein du nucléole. Compt. Rend. Acad. Sci. [Paris]244: 1825–1827.Google Scholar
  116. 116.
    Zeuthen, E., andO. Scherbaum. 1954. Synchronous divisions in mass cultures of the ciliate protozoonTetrahymena pyriformis as induced by temperature changes.In: Kitching, J. A. [ed.] Recent developments in cell physiology. [p. 141–156.]Google Scholar

Copyright information

© The New York Botanical Garden 1959

Authors and Affiliations

  • Herbert Stern
    • 1
  1. 1.Canada Department of AgricultureCanada

Personalised recommendations