The Botanical Review

, Volume 35, Issue 1, pp 1–16 | Cite as

Implications of allelopathy in agricultural plant science

  • H. B. Tukey


Substances potentially involved in allelopathy are liberated from plants by (a) leaching of foliage by rain, (b) abscission and litter fall, (c) volatilization from foliage, and (d) root exudation.

Substances, including metabolites such as mineral nutrients, carbohydrates, amino and organic acids, and growth regulators, can be leached from a wide variety of plants by rain and dew, and the quantity and quality of losses are affected by a great number of both external and internal factors. Materials leached from one plant may have an influence upon the development of the same or other adjacent plants.

Plant/plant chemical interactions have been well recognized in commercial agriculture and, in fact, form the basis of many common agricultural practices. They are currently being utilized in modern plant science in the development of bioassay systems for detecting growth regulators, the use of rootstocks to influence the growth and development of scions, in detection and eradication of diseases, and in fruit storage and ripening.


Gibberellin Botanical Review Tropical Rainforest Bromeliad Phlorizin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Arens, K. 1934. Die kutikuläre Exkretion der Laubblatter. Jahrb. wiss. Bot.80: 248–300.Google Scholar
  2. Ballantyne, D. J. 1962. A growth inhibitor from the roots ofChrysanthemum morifolium Ramat. and its influence upon the gibberellic acid response. Canad Jour. Bot.40: 1229–1235.Google Scholar
  3. Bhan, K. C., A. Wallace, &O. L. Lunt. 1959. Some mineral losses from leaves by leaching. Proc. Amer. Soc. Hort. Sci.73: 289–293.Google Scholar
  4. Böde, H. R. 1958. Beiträge zur Kenntnis allelopathischer Erscheinungen bei einigen Juglandaceen. Planta51: 440–480.CrossRefGoogle Scholar
  5. Bonner, J. 1950. The role of toxic substances in the interaction of higher plants. Bot. Rev.16: 51–65.Google Scholar
  6. Börner, H. 1959. The apple replant problem. I. The excretion of phlorizin from apple residues. Contr. Boyce Thompson Inst.20: 39–56.Google Scholar
  7. —. 1960. Liberation of organic substances from higher plants and their role in the soil sickness problem. Bot. Rev.26: 393–424.Google Scholar
  8. Buchenau, F. 1883. Die düngende Wirkung des aus dem Baum-kronen niederträufelnden Wassers. Ber deutsch Bot. Ges.1: 108–109.Google Scholar
  9. Bukovac, M. J., H. B. Tukey, &S. H. Wittwer. 1967. Effet de la greffe et l’orientation du scion sur la circulation des substances nutritives d’après la méthode des radioisotopes.In: Colloque International sur la Greffe de Tissus Vegetaux et Animaux. Compt. Rend. Travaux Rennes, France, pp. 115–130.Google Scholar
  10. Burg, S. P. 1968. Ethylene, plant senescence and abscission. Plant Physiol.43: 1503–1511.PubMedGoogle Scholar
  11. —, &E. A. Burg. 1965. Ethylene action and the ripening of fruits. Science148: 1190–96.PubMedCrossRefGoogle Scholar
  12. Cholodny, N. 1932. Zur Kenntnis der durch das regnerische Wetter verursachten Ertragsabnahme bei Getreidearten. Ber. deutsch. Bot. Ges.50: 562–570.Google Scholar
  13. Dalbro, S. 1955. Leaching of nutrients from apple foliage. Proc. XIV Intern. Hort. Cong. 770–778.Google Scholar
  14. deCandolle, A. 1832. Physiologie vegetale.Google Scholar
  15. DeSaussure, N. T. 1804. Recherches chimiques sur la végétation. Gauthier-Villars, Paris. 327 p.Google Scholar
  16. Edmisten, J. A. An ecological value of drip tips. Ecology (in press).Google Scholar
  17. Evenari, M. 1961. Chemical influences of other plants (allelopathy). Handbuch Pflanzenphysiol.16: 691–736.Google Scholar
  18. Good, G. L., &H. B. Tukey, Jr. 1966. Leaching of metabolites from cuttings under mist. Proc. Amer. Soc. Hort. Sci.89: 727–733.Google Scholar
  19. Gray, R., &J. Bonner. 1948. An inhibitor of plant growth from the leaves ofEncelia farinosa. Amer. Jour. Bot.35: 52–57.CrossRefGoogle Scholar
  20. Grümmer, G. 1955. Die gegenseitige Beeinflussung höherer Pflanzen-Allelopathie. Gustav Fischer, Jena. 162 pp.Google Scholar
  21. Hales, S. 1727. Vegetable Staticks. W. and J. Innys and T. Woodward, London.Google Scholar
  22. Harada, H., &J. P. Nitsch. 1959. Changes in endogenous growth substances during flower development. Plant Physiol.34: 409–415.PubMedGoogle Scholar
  23. Jensen, D. D., W. H. Griggs, C. Q. Gonzales, &H. Schneider. 1964. Pear decline virus transmission by pear psylla. Phytopath.54: 1346–1351.Google Scholar
  24. Kline, J., &H. B. Tukey, Jr. 1969.In: A Tropical Rainforest, Ed. byH. T. Odum, Atomic Energy Commission, Division of Technical Information, Washington.Google Scholar
  25. Kozel, P. C. 1968. Leaching of gibberellin-like substances from the foliage ofChrysanthemum morifolium cv. Princess Anne. Ph.D. Thesis, Cornell Univ., Ithaca, N.Y.Google Scholar
  26. —, &H. B. Tukey, Jr. 1968. Loss or gibberellins by leaching from stems and foliage ofChrysanthemum morifolium ‘Princess Anne’. Amer. Jour. Bot.55: 1184–1189.CrossRefGoogle Scholar
  27. Lausberg, T. 1935. Quantitative Untersuchungen über die kutikuläre Exkretion der Laubblätter. Jahrb wiss. Bot.81: 769–806.Google Scholar
  28. LeClerc, J. A., &J. F. Breazeale. 1908. Plant food removed from growing plants by rain or dew. U.S. Dept. of Agric. Yearbook Agri. pp. 389–402.Google Scholar
  29. Linskens, A. F. 1952. Über die Änderung der Benetzbarkeit von Blattoberflächen und deren Ursache. Planta41: 40–50.CrossRefGoogle Scholar
  30. Long, W. G., D. V. Sweet, &H. B. Tukey. 1956. Loss of nutrients from plant foliage by leaching as indicated by radioisotopes. Science123: 1039–1040.PubMedCrossRefGoogle Scholar
  31. McCalla, T. M., &F. A. HaskiNS. 1964. Phytotoxic substances from soil microorganisms and crop residues. Bact. Rev.28: 181–207.PubMedGoogle Scholar
  32. Mecklenburg, R. A. 1964. The influence of foliar leaching on plant nutrition with special reference to root-uptake, translocation, and loss of calcium. Ph.D. Thesis, Cornell Univ., Ithaca, N.Y.Google Scholar
  33. —, &H. B. Tukey, Jr. 1964. Influence of foliar leaching on root-uptake and translocation of calcium-45 to the stems of foliage ofPhaseolus vulgaris. Plant Physiol.39: 533–536.PubMedGoogle Scholar
  34. —,H. B. Tukey, Jr., &J. V. Morgan. 1966. A mechanism for leaching of calcium from foliage. Plant Physiol.41: 610–613.PubMedGoogle Scholar
  35. Mes, M. G. 1954. Excretion (recretion) of phosphorus and the other mineral elements under the influence of rain. S. African Jour. Sci.50: 167–172.Google Scholar
  36. Mitchell, C. A. 1968. Detection of carbohydrates leached from above-ground plant parts. M. S. Thesis, Cornell Univ., Ithaca, N.Y.Google Scholar
  37. Molisch, H. 1937. Der Einfluss einer Pflanze auf die andere Allelopathie. Gustav Fischer, Jena. 106 pp.Google Scholar
  38. Muller, C. H. 1964. Volatile growth inhibitors produced bySalvia species. Bull. Torrey Bot. Club.91: 327–330.CrossRefGoogle Scholar
  39. — 1966. The role of chemical inhibition (allelopathy) in vegetational composition. Bull. Torrey Bot. Club.93: 332–351.CrossRefGoogle Scholar
  40. Oostenbrink, M., K. Kuper, &J. J. s’Jacob. 1957. Tagetes als Feinpflanzen von Protylenchus-arten. Nematologica 2 (suppl.) 424–433 S.Google Scholar
  41. Patrick, Z. A. 1955. The peach replant problem in Ontario. II. Toxic substances from microbiological decomposition products of peach root residues. Canad. Jour. Bot.33: 461–486.Google Scholar
  42. Pickering, S. V. 1917. The effect of one plant on another. Ann. Bot.31: 181–187.Google Scholar
  43. — 1919. The action of one crop on another. Jour. Roy. Hort. Soc.43: 372–380.Google Scholar
  44. Powell, L. E., &K. J. Toutvydos. 1967. Chromatography of gibberellins in silica gel partition columns. Nature213: 292.CrossRefGoogle Scholar
  45. Proebsting, E. L., &A. E. Gilmore. 1941. The relation of peach root toxicity to the re-establishing of peach orchards. Proc. Amer. Soc. Hort. Sci.38: 21–26.Google Scholar
  46. Rice, E. L. 1964. Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants. Ecology45: 824–837.CrossRefGoogle Scholar
  47. Rovira, A. D. 1969. Plant root exudates Bot. Rev. (in press).Google Scholar
  48. Schoch, K. 1955. Erfassung der kutikularen Rekretion von K and Ca. Ber. Schweiz, Bot. Ges.65: 205–250.Google Scholar
  49. Stenlid, G. 1958. Salt losses and redistribution of salts in higher plants. Encyclopedia Plant Physiol.4: 615–637.Google Scholar
  50. Tamm, C. O. 1950. Growth and plant nutrient concentration inHylocomium proliferum, Lindb. in relation to tree canopy. Oikos.2: 60–64.CrossRefGoogle Scholar
  51. Tukey, H. B. 1964. Dwarfed fruit trees. The Macmillan Co., New York, xi + 562 pp.Google Scholar
  52. -, &K. D. Brase. 1933. Influence of the scion and of an intermediate stempiece upon the character and development of roots of young apple trees. N. Y. State Agr. Exp. Sta. Tech. Bull. 218.Google Scholar
  53. —,S. H. Wittwer, S. J. Teubner, &W. G. Long. 1956. Utilization of radioactive isotopes in resolving the effectiveness of foliar absorption of plant nutrients. Proc. Intern. Conference on Peaceful Uses of Atomic Energy12: 138–143.Google Scholar
  54. Tukey, H. B. Jr. 1966. Leaching of metabolites from above-ground plant parts and its implications. Bull. Torrey Bot. Club.93: 385–401.CrossRefGoogle Scholar
  55. — 1969. Leaching of metabolites from foliage and its implication in the tropical rainforest.In: A Tropical Rainforest, Ed. byH. T. Odum, Atomic Energy Commission, Division of Technical Information, Washington.Google Scholar
  56. —, &R. A. Mecklenburg. 1964. Leaching of metabolites from foliage and subsequent reabsorption and redistribution of the leachate in plants. Amer. Jour. Bot.51: 737–742.CrossRefGoogle Scholar
  57. —, &J. V. Morgan. 1963. Injury to foliage and its effect upon the leaching of nutrients from above-ground plant parts. Physiologia Plantarum16: 557–565.CrossRefGoogle Scholar
  58. ——. 1964. The occurrence of leaching from above-ground plant parts and the nature of the material leached. Proc. XVI Intern. Hort. Cong.4: 146–153.Google Scholar
  59. —, &H. B. Tukey. 1962. The loss of organic and inorganic materials by leaching from leaves and other above-ground plant parts.In: Radioisotopes in Soil-Plant Nutrition Studies. Intern. Atomic Energy Agency, Vienna. pp. 289–302.Google Scholar
  60. ——, &S. H. Wittwer, 1958. Loss of nutrients by foliar leaching as determined by radioisotopes. Proc. Amer. Soc. Hort. Sci.126: 120–121.Google Scholar
  61. —,S. H. Wittwer, &H. B. Tukey. 1957. Leaching of carbohydrates from plant foliage as related to light intensity. Science126: 120–121.PubMedCrossRefGoogle Scholar
  62. von Homeyer, E. F. 1883. Bemerkungen über die düngende Wirkung des aus dem Baumkronen niederträufelnden Wassers. Ber. deutsch. Bot. Ges.1: 471.Google Scholar
  63. Wallace, T. 1930. Experiments on the effects of leaching with cold water on the foliage of fruit trees. The source of leaching of dry matter, ash, and potash from leaves of apple, pears, plums, blackcurrant, and gooseberry. Jour. Pom. Hort. Sci.8: 44–60.Google Scholar
  64. Wander, I. W., &J. H. Gourley. 1943. Effect of heavy mulch in an apple orchard upon several soil constituents and the mineral content of foliage and fruit. Proc. Amer. Soc. Hort. Sci.42: 1–6.Google Scholar
  65. Whittaker, R. H. 1968. Chemistry of communities. Address at meeting on plant-plant and plant-animal interactions, Santa Barbara, Calif., March16, 1968, and Science (in press).Google Scholar
  66. -Whittaker, R. H. The biochemical ecology of higher plants.In: Chemical Ecology, Ed. by E. Sondheimer & J. B. Simeone, Academic Press, New York City, (in press).Google Scholar
  67. Whyte, P., &L. C. Luckwill. 1966. A new bioassay for gibberellins based on retardation of leaf senescence inRumex obtusifolius. Nature210: 1360.CrossRefGoogle Scholar
  68. Wittwer, S. H., &F. G. Teubner. 1959. Foliar absorption of mineral nutrients. Ann. Rev. Plant Physiol.10: 13–27.CrossRefGoogle Scholar
  69. Woods, F. W. 1960. Biological antagonisms due to phytotoxic root exudates. Bot. Rev.26: 546–569.CrossRefGoogle Scholar
  70. Yamada, Y., M. J. Bukovac, &S. H. Wittwer. 1964. Penetration of ions through isolated cuticles. Plant Physiol.39: 28–32.PubMedGoogle Scholar
  71. Zitnak, A., R. Goodwin-Wilson, &Lan-Fun Li. 1960. Studies relating to a growth reduction principle in chrysanthemum plants. Proc. Canad. Hort. Sci. 1: 24–33.Google Scholar

Copyright information

© The New York Botanical Garden 1969

Authors and Affiliations

  • H. B. Tukey
    • 1
  1. 1.Department of Floriculture and Ornamental HorticultureCornell UniversityIthaca

Personalised recommendations