The Botanical Review

, Volume 33, Issue 2, pp 99–104 | Cite as

Symbiotrophy of lignophytes and fungi: Its terminological and conceptual deficiencies

  • S. A. Wilde
  • Andre Lafond


The authors suggest a replacement of the terms ectotrophic, endotrophic, and peritrophic mycorrhizae byectocellular, endocellular, andperipheral mycorrhizae.

The termrhizoclena (root mantle) is advanced for superficial rootadherent fungal mycelia. The two principal varieties of rhizoclenae are:mycochlamydes, lanose fungal mantles enveloping the roots;mycoplasts, grumose fungal mantles consisting of sapropellous clusters of soil, root sloughings, and fungal hyphae agglutinated by microbial excretions.

Emphasis is placed on nutritional importance of the epirhizal root auxiliaries. These constituents of the rhizosphere by virtue of their chelating processes convert raw organic and mineral sources of nutrients into available form. A tree or other lignophyte removed from the soil is only a part of the whole plant surgically separated from its rhizospheric digestive organ. In consequence, suggestion is made to recognize obvious orphanero-symbiosis, detectable by ocular or microtome examination, and concealed orcrypto-symbiosis, effected by juxtaposed mycelia.

A scarcity or entire absence of ectocellular mycorrhizal short roots of seedlings naturally reproduced under the canopy of mother stands indicated the minor nutritional importance of these root-fungus organs. The abundance of short roots, common to greenhouse and nursery cultures, is attributed to the exposure of trees to full sunlight and excessive production of carbohydrates.

Preservation of the termpseudomycorrhizae may be justified in application to mycelia-free forked short roots produced in sterile nutrient solutions, especially those enriched in growth-promoting hormones.


Botanical Review Fungal Mycelium Short Root Nutritional Importance Prairie Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Fassi, B. 1960. Die Verteilung der ektotrophen Mykorrhizen in der Streu und in der oberen Bodenschicht derGilbertiodendron-Dewevrei-Wälder in Congo. Int. Mycorrhizasymposium, Weimar, pp. 297–302.Google Scholar
  2. — 1967. Mycorrhizae of nursery stock and volunteer seedlings of red and white pine of Wisconsin. Coll. Agr. and Wis. Conservation Dep., Madison, Wis., Tech. Notes No. 106.Google Scholar
  3. Jahn, E. 1934. Die peritrophe Mykorrhiza. Ber. Deut. Bot. Ges.52: 463–474.Google Scholar
  4. Melin, E. 1923. Experimentelle Untersuchungenüber die Konstitution und Ekologie der Mykorrhizen vonPinus silvestris (L.) undPicea Abies (L.) Karst. Mykologische Untersuchungen und Berichte2: 73–331.Google Scholar
  5. Peyronel, B. 1921. Nouveaux cas de rapports mycorrhiziques entre Phanérogames et Basidiomycètes. Bull Soc. Myc. France37: 143–146.Google Scholar
  6. Slankis, V. 1949. Wirkung von beta-Indolylessigsäure auf die dichotomischen Verzwei-gung isolierter Wurzeln vonPinus silvestris. Svensk Bot. Tidsk.43: 603–607.Google Scholar
  7. Spyridakis, D. E. 1965. The role of chelating agents in weathering of minerals and tree nutrition. Ph.D. Thesis, Univ. Wis. Library, Madison, Wis., 138 pp.Google Scholar
  8. —,G. Chesters, andS. A. Wilde. 1967. Kaolinization of biotite as a result of coniferous and deciduous seedling growth. Soil Sci. Soc. Proc.31: 203–210.CrossRefGoogle Scholar
  9. Wilde, S. A. 1954. Mycorrhizal fungi: Their distribution and effect on tree growth. Soil Sci.78: 23–31.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1967

Authors and Affiliations

  • S. A. Wilde
    • 2
  • Andre Lafond
    • 1
  1. 1.University of WisconsinMadison
  2. 2.Université LavalQu#x00E9;bec

Personalised recommendations