The Botanical Review

, Volume 32, Issue 4, pp 293–382 | Cite as

Food relations of woody plants

  • Theodore T. Kozlowski
  • Theodor Keller


Woody Plant Botanical Review Apple Tree Cambial Activity Carbohydrate Reserve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Agnew, E. L., andN. F. Childers. 1939. The effect of two mild sulphur sprays on the photosynthetic activity of apple leaves. Proc. Amer. Soc. Hort. Sci.37: 379–383.Google Scholar
  2. Aldrich, W. W., andT. R. Young. 1941. Carbohydrate changes in the date palm during the summer. Proc. Amer. Soc. Hort. Sci.39: 110–118.Google Scholar
  3. Alfieri, R. D., andR. F. Evert. 1965. Seasonal phloem development inPinus strobus. Amer. Jour. Bot.52: 626–627.Google Scholar
  4. Allen, R. M. 1964. Contributions of roots, stems and leaves to height growth of longleaf pine. Forest Sci.10: 14–16.Google Scholar
  5. Allmendinger, D. F., A. L. Kenworthy, andE. L. Overholser. 1943. The carbon dioxide intake of apple leaves as affected by reducing the available soil water to different levels. Proc. Amer. Soc. Hort. Sci.42: 133–140.Google Scholar
  6. Alvik, G. 1939. Ueber Assimilation und Atmung einiger Holzgewächse im westnorwegischen Winter. Meddel fra Vestlandets Forstl. Forsøkssta. (Bergen) 22.Google Scholar
  7. Alvim, P. de T. 1964. Tree growth periodicity in tropical climates.In: The formation of wood in forest trees, Ed. by M. H. Zimmermann, Academic Press, New York, pp. 479–495.Google Scholar
  8. Anderssen, F. G. 1929. Some seasonal changes in the tracheal sap of pear and apricot. Plant Physiol.4: 459–476.PubMedCrossRefGoogle Scholar
  9. Andrews, P., andL. Hough. 1958. The biosynthesis of polysaccharides I. Incorporation of14CO2 into plum-leaf polysaccharides during photosynthesis. Jour. Chem. Soc. London1958: 4483–4488.Google Scholar
  10. Andrews, S. R., andL. S. Gill. 1939. Determining the time branches on living trees have been dead. Jour. Forestry37: 930–935.Google Scholar
  11. Assarson, A., andO. Theander. 1958. The constituents of conifer needles. I. Low molecular weight carbohydrates in the needles ofPinus sylvestris. Acta Chem. Scand.12: 1319–1322.CrossRefGoogle Scholar
  12. Baker, F. S. 1950. Principles of silviculture. McGraw Hill, New York.Google Scholar
  13. Baldwin, H. I. 1956a. The period of height growth in different provenances of European larch. XII Congr. Int. Union Forest Res. Org., Oxford, IUFRO/56/22.Google Scholar
  14. -. 1956b. The period of height growth in different provenances of European larch. F. A. O. Document 56/4/2556, 8 pp.Google Scholar
  15. Bannan, M. W. 1956. Some aspects of the elongation of fusiform cambial cells inThuja occidentalis. Can. Jour. Bot.34: 175–176.CrossRefGoogle Scholar
  16. Barlow, H. W. B. 1964. An interim report on a long-term experiment to assess the effect of cropping on apple tree growth. Ann. Rep. East Mailing Res. Sta. for 1963, pp. 84–93.Google Scholar
  17. Barner, J. 1955. Der tageszyklische Verlauf von Assimilation und Atmung im Lichte stoffproduktionsanalytischer Vergleichsuntersuchungen. Ber. Deut. Bot. Ges.68: 271–274Google Scholar
  18. — 1957. Die Einwirkung der Staunässe auf die Organbildung und Physiologie von Holzgewächsen unter besonderer Berücksichtigung der Darstellung anatomischer Befunde mit Hilfe von Koordinatentransformationen. Ber. Deut. Bot. Ges.70: 3–10.Google Scholar
  19. — 1961. Wirkungen von organischen und anorganischen Fungiziden auf die innere Blattstruktur und Stoffproduktion der Pflanzen. Mitt. biol. Bundes-Anst. Land-u. Forstwirtsch. Berlin-Dahlem104: 178–183.Google Scholar
  20. Basanjko, A. A., andM. P. Turzova. 1953. (Basing the date of pruning on the assimilation activity of (vine) leaves.) (In Russian.) Vinodelic i Vinogradarstvo11: 29–31.Google Scholar
  21. Baumeister, W. 1952. Zur Anwendung des Ultrarot-Absorptionsschreibers für CO2-Assimilationsmessungen an abgeschnittenen Blättern im Laboratorium. Ber. Deut. Bot. Ges.65: 361–368.Google Scholar
  22. Bean, R. C., G. E. Porter, andB. K. Barr. 1963. Photosynthesis and respiration in developing fruits. III. Variations in photosynthetic capacities during color change in citrus. Plant Physiol.38: 285–290.PubMedCrossRefGoogle Scholar
  23. —, andG. W. Todd. 1960. Photosynthesis and respiration in developing fruits. I. C14O2 uptake by young oranges in the light and in the dark. Plant Physiol.35: 425–429.PubMedCrossRefGoogle Scholar
  24. Bennett, J. P. 1924. The distribution of carbohydrate foods in the apricot tree. Proc. Amer. Soc. Hort. Sci.21: 372–384.Google Scholar
  25. Bergmann-Lehnert, I. 1962 Methoden zum Nachweis der Verschutzungen von Blattoberflächen. Wiss. Zeitschr. Techn. Univ. Dresden11: 571–574.Google Scholar
  26. Bernstein, Z., andA. Fahn. 1960. The effect of annual and bi-annual pruning on the seasonal changes in xylem formation in the grapevine. Ann. Bot.24: 159–171.Google Scholar
  27. Bieleski, R. L. 1959. Factors affecting growth and distribution of Kauri (Agathis australis Salisb.) II. Effect of light intensity on seedling growth. Australian Jour. Bot.7: 268–278.CrossRefGoogle Scholar
  28. Bjurman, B. 1959. The photosynthesis in diploid and tetraploidRibes satigrum. Physiol. Plantarum12: 183–187.CrossRefGoogle Scholar
  29. Blackman, G. E., andJ. N. Black. 1959. Physiological and ecological studies in the analysis of plant environment 12. The role of the light factor in limiting growth. Ann. Bot.23: 131–141.Google Scholar
  30. Böhning, H. 1949. Time course of photosynthesis in apple leaves exposed to continuous illumination. Plant Physiol.24: 222–240.PubMedCrossRefGoogle Scholar
  31. Bonner, J. 1962. The upper limit of crop yield. Science137: 11–15.PubMedCrossRefGoogle Scholar
  32. Bormann, F. H. 1953. Factors determining the role of loblolly pine and sweetgum in early old-field succession in the Piedmont of North Carolina. Ecol. Monogr.23: 339–358.CrossRefGoogle Scholar
  33. — 1961. Intraspecific root grafting and the survival of eastern white pine stumps. Forest Sci.7: 247–256.Google Scholar
  34. — 1962. Root grafting and non-competitive relationships between trees.In: Tree growth, Ed. by T. T. Kozlowski, Ronald Press, New York, Chapter 13.Google Scholar
  35. — 1965. Changes in the growth pattern of white pine trees undergoing suppression. Ecology46: 269–277.CrossRefGoogle Scholar
  36. Börtitz, S. 1964. Physiologische und biochemische Beiträge zur Rauchschadenforschung. I. Untersuchungen über die individuell unterschiedliche Wirkung von SO2 auf Assimilation und einige Inhaltstoffe der Nadeln von Fichte (Picea abies L. Karst.) durch Küvettenbegasung einzelner Zweige im Freilandversuch. Biol. Zentralbl.83: 501–513.Google Scholar
  37. —, undG. Weise. 1963. Biochemische und gasstoffwechselphysiologische Untersuchungen an einigen Gehölzen nach Frostung unter standardisierten Bedingungen. Biol. Zentralbl.82: 733–747.Google Scholar
  38. Bosian, G. 1960. Zum Küvettenklimaproblem: Beweisführung für die Nichtexistenz 2-gipfliger Assimilationskurven bei Verwendung von klimatisiern Küvetten. Flora149: 167–188.Google Scholar
  39. -,M. Paetzholdt, undA. Ensgraber. 1960. Ueber die Beeinflussung der CO2-Assimilation der Rebe durch Pflanzenschutzmittel. Verhandl. IV. Internat. Pflanz.-schutz-Kongress Hamburg, 1957, pp. 1517–1522.Google Scholar
  40. Bourdeau, P. F. 1954. Oak seedling ecology determining segregation of species in Piedmont oak-hickory forests. Ecol. Monogr.24: 297–320.CrossRefGoogle Scholar
  41. — 1959. Seasonal variations of the photosynthetic efficiency of evergreen conifers. Ecology40: 63–67.CrossRefGoogle Scholar
  42. — 1963. Photosynthesis and respiration ofPinus strobus L. seedlings in relation to provenance and treatment. Ecology44: 710–716.CrossRefGoogle Scholar
  43. —, andM. L. Laverick. 1958. Tolerance and photosynthetic adaptability to light intensity in white pine, red pine, hemlock, and ailanthus seedlings. Forest Sci.4: 196–207.Google Scholar
  44. —, andF. Mergen. 1959. Photosynthesis and respiration in colchicine induced polyploid seedlings of slash pine. Jour. Forestry57: 191–193.Google Scholar
  45. —, andG. M. Woodwell. 1964. Field measurements of carbon dioxide exchange byPinus rigida trees exposed to chronic gamma irradiation. Ecology45: 403–406.CrossRefGoogle Scholar
  46. Bradley, M. V., andJ. C. Crane. 1957. Gibberellin stimulated cambial activity in stems of apricot spur shoots. Science126: 972–973.PubMedCrossRefGoogle Scholar
  47. Bray, J. R. 1961. An estimate of a minimum quantum yield of photosynthesis based on ecologic data. Plant Physiol.36: 371–373.PubMedCrossRefGoogle Scholar
  48. Brimblecombe, A. R. 1961. Seasonal starch variation in some Queensland hardwood timber species and its relation toLyctus attack. Proc. Roy. Soc. Queensland62: 59–67.Google Scholar
  49. Brix, H. 1962. The effect of water stress on the rates of photosynthesis and respiration in tomato plants and loblolly pine seedlings. Physiol. Plantarum15: 10–20.CrossRefGoogle Scholar
  50. Brody, H. W., andN. F. Childers. 1938. The effect of dilute liquid lime-sulfur sprays in the photosynthesis of apple leaves. Proc. Amer. Soc. Hort. Sci.36: 205–209.Google Scholar
  51. Broekhuizen, J. T. M. 1962. Over net groeritime van populieren. Inst. Forestry Res. Wageningen, Comm. No. 5.Google Scholar
  52. Bruno, F. 1936. Studio sulla fotosintesi clorofilliana delle piante sempreverdi nel clima del mediterraneo. Lavori R. Ist. Bot. Palermo7: 1–156.Google Scholar
  53. Burger, H. 1926. Untersuchungen über das Höhenwachstum verschiedener Holzarten. Mitt. Schweiz. Centralanst. Versuchswes.14: 1–158.Google Scholar
  54. Burley, J. W. A. 1961. Carbohydrate translocation in raspberry and soybean. Plant Physiol.36: 820–824.PubMedCrossRefGoogle Scholar
  55. Buttrose, M. S. 1966. Use of carbohydrate reserves during growth from cuttings of grape vine. Australian Jour. Biol. Sci.19: 247–256.Google Scholar
  56. Cameron, S. H. 1923. Storage of starch in the pear and apricot. Proc. Amer. Soc. Hort. Sci.20: 1–3.Google Scholar
  57. — 1933. Starch in the young orange tree. Proc. Amer. Soc. Hort. Sci.29: 110–114.Google Scholar
  58. —, andG. Borst. 1938. Starch in the avocado tree. Proc. Amer. Soc. Hort. Sci.36: 255–258.Google Scholar
  59. —, andC. A. Schroeder. 1945. Cambial activity and starch cycle in bearing orange trees. Proc. Amer. Soc. Hort. Sci.46: 55–59.Google Scholar
  60. Cartellieri, E. 1936. Jahresgang von osmotischem Wert, Transpiration und Assimilation einiger Ericaceen der alpinen Zwergstrauchheide und vonPinus cembra. Jahrb. Wiss. Bot.82: 460–506.Google Scholar
  61. Chalk, L. 1930. The formation of spring and summerwood in ash and Douglas fir. Oxford Forestry Memoirs No. 10.Google Scholar
  62. Chandler, W. H., andA. J. Heinicke. 1925. Some effects of fruiting on the growth of grape vines. Proc. Amer. Soc. Hort. Sci.22: 74–80.Google Scholar
  63. ——. 1926. The effect of fruiting on the growth of Oldenburg apple trees. Proc. Amer. Soc. Hort. Sci.23: 36–46.Google Scholar
  64. Chapman, H. W., L. S. Gleason, andW. E. Loomis. 1954. The carbon dioxide content of field air. Plant Physiol.29: 500–503.PubMedCrossRefGoogle Scholar
  65. Chapman, P. J., S. E. Lienk, A. W. Avens, andR. W. White. 1962. Selection of a plant spray oil combining full pesticidal efficiency with minimum plant injury hazards. Jour. Econ. Ent.55: 737–744.Google Scholar
  66. Childers, N. F., andF. F. Cowart. 1935. The photosynthesis, transpiration, and stomata of apple leaves as affected by certain nutrient deficiencies. Proc. Amer. Soc. Hort. Sci.33: 160–163.Google Scholar
  67. —, andD. G. White. 1942. Influence of submersion of the roots on transpiration, apparent photosynthesis, and respiration of young apple trees. Plant Physiol.17: 603–618.PubMedCrossRefGoogle Scholar
  68. ——, andH. W. Ford. 1943. Effect of ground water table on apparent photosynthesis and growth of apple trees. Proc. Amer. Soc. Hort. Sci.42: 59–60.Google Scholar
  69. Ching, TeMay. 1963. Change of chemical reserves in germinating Douglas-fir seed. Forest Sci.9: 226–231.Google Scholar
  70. —, andK. K. Ching. 1962. Physical and physiological changes in maturing Douglas-fir cone and seed. Forest Sci.8: 21–31.Google Scholar
  71. —, andS. C. Fang. 1963. Utilization of labeled glucose in developing Douglasfir seed cones. Plant Physiol.38: 551–554.PubMedCrossRefGoogle Scholar
  72. Chowdhury, K. A. 1939. The formation of growth rings in Indian trees. I. Indian Forest Rec. Util.2: 1–39.Google Scholar
  73. Christopher, E. P. 1935. The effect of flotation sulphur spray on the CO2 assimilation of apple leaves. Proc. Amer. Soc. Hort. Sci.33: 149–151.Google Scholar
  74. — 1942. A comparison of lime sulphur and flotation sulphur spray on apple leaves. Proc. Amer. Soc. Hort. Sci.40: 63–67.Google Scholar
  75. Clark, J. 1956. Photosynthesis of white spruce and balsam fir. Canada Dep. Agr. Div. Forest Biol. Bi-Monthly Progress Rept.12: 1–2.Google Scholar
  76. — 1961. Photosynthesis and respiration in white spruce and balsam fir. State University Coll. For. (Syracuse, N. Y.) Tech. Bull. 85.Google Scholar
  77. Clausen, J. J., andT. T. Kozlowski. 1965a. Seasonal changes in moisture contents of gymnosperm cones. Nature206: 112–113.CrossRefGoogle Scholar
  78. ——. 1965b. Heterophyllous shoots inBetula papyrifera. Nature205: 1030–1031.CrossRefGoogle Scholar
  79. Clore, W. J. 1935. The effect of Bordeaux, copper and calcium sprays upon CO2 intake of Delicious apple leaves. Proc. Amer. Soc. Hort. Sci.33: 177–179.Google Scholar
  80. Cockerham, G. 1930. Some observations on cambial activity and seasonal starch content in sycamore (Acer pseudoplatanus). Proc. Leeds Philos. Soc.2: 64–80.Google Scholar
  81. Cook, D. B. 1941. The period of growth in some northeastern trees. Jour. Forestry39: 957–959.Google Scholar
  82. Coombe, D. E. 1960. An analysis of the growth ofTrema guineensis. Jour. Ecology48: 219–232.CrossRefGoogle Scholar
  83. —, andW. Hatfield. 1962. An analysis of the growth ofMusanga cecropiodes. Jour. Ecology50: 221–234.CrossRefGoogle Scholar
  84. Critchfield, W. B. 1960. Leaf dimorphism inPopulus trichocarpa. Amer. Jour. Bot.47: 699–711.CrossRefGoogle Scholar
  85. Crosby, E. A., andJ. C. Crane. 1952. The relationship of the carbohydrate cycle to the expression of parthenocarpy in mission and Adriatic figs. Proc. Amer. Soc. Hort. Sci.59: 196–206.Google Scholar
  86. Cunningham, R. K., andJ. C. Burridge. 1960. The growth of cacao (Theobroma cacao) with and without shade. Ann. Bot.24: 458–462.Google Scholar
  87. Dadykin, V. P., andV. G. Grigorjena. 1951. O fotosinteze u rastenii Zapoljarjja pri kruglosutocnom osvescenii. Dokl. Akad. Nauk. SSR80: 261–263.Google Scholar
  88. Dalbro, S., andG. Nielsen. 1955. Nogle sprjtemidlers virkning pa aebletraeers vaekst ag fotosynthese. Tidsskr. Planteavl.58: 657–682.Google Scholar
  89. Davis, J. D., andR. F. Evert. 1965. Phloem development inPopulus tremuloides. Amer. Jour. Bot.52: 627.Google Scholar
  90. Decker, J. P. 1944. Effect of temperature on photosynthesis and respiration in red and loblolly pines. Plant Physiol.19: 679–688.PubMedCrossRefGoogle Scholar
  91. — 1954. The effect of light intensity on photosynthetic rate in Scotch Pine. Plant Physiol.29: 305–306.PubMedCrossRefGoogle Scholar
  92. — 1955. The uncommon denominator in photosynthesis as related to tolerance. Forest Sci.1: 88–89.Google Scholar
  93. —, andM. A. Tio. 1959. Photosynthetic surges in coffee seedlings. Jour. Agr. Univ. Puerto Rico43: 50–55.Google Scholar
  94. DeSelm, H. R., 1952. Carbon dioxide gradients in a beech forest in Central Ohio. Ohio Jour. Sci.52: 187–198.Google Scholar
  95. Dietrichs, H. H., andE. Schaich. 1965. Type, proportion and distribution of lowmolecular carbohydrates inFagus sylvatica. Forestry Abstr. 26, No. 1699.Google Scholar
  96. Dixon, H. H. 1916. On the composition of the sap in the conducting tracts of trees at different levels and at different seasons of the year. Sci. Proc. Roy. Dublin Soc. n.s.15: 51.Google Scholar
  97. Duff, G. H., andN. J. Nolan. 1953. Growth and morphogenesis in the Canadian forest species. I. The controls of cambial and apical activity inPinus resinosa Ait. Can. Jour. Bot.31: 471–513.CrossRefGoogle Scholar
  98. Dugger, B. M. 1952. The permeability of non-stomate leaf epidermis to carbon dioxide. Plant Physiol.27: 489–499.PubMedCrossRefGoogle Scholar
  99. Eidmann, F. E. 1943. Untersuchungen über die Wurzelatmung und Transpiration unserer Hauptholzarten. Schriftenreihe Herman Göring. Akad. Deut. Forstwissenschaft, Heft 5. Sauerländer, Frankfurt a. Main, 144 pp.Google Scholar
  100. — 1961. Rauchschäden im Walde.In: “Forschungsergebnisse zur Förderung der forstlichen Erzeugung” (Hiltrup)3: 99–103.Google Scholar
  101. Eifert, J., andA. Eifert. 1963. Maximum of starch during spring in woody plants (Vitis riparia Michx.). Nature199: 825–826.CrossRefGoogle Scholar
  102. Eklund, B. 1954. Årsringsbreddens klimatiskt betingade variation hos tall och gran inom norra Sverige åren 1900–1944. Medd. Skogsforskn. Inst. 44, 150 pp.Google Scholar
  103. Elder, W. C., andJ. E. Webster. 1959. Food reserves in post oak stumps and roots. Oklahoma Agr. Exp. Sta. Tech. Bull. T-80.Google Scholar
  104. Ersov, M. F. 1957. O fotosinteze cistyh i zaplennyh listev lipy melkolistnoj i vjaza melkolistnogo. Dokl. Akad. Nauk. SSSR112: 1136–1138.Google Scholar
  105. Esau, K. 1953. Plant anatomy. John Wiley, New York.Google Scholar
  106. Evert, R. F. 1960. Phloem structure inPyrus communis L. and its seasonal changes. Univ. California Publ. Bot.32: 127–194.Google Scholar
  107. — 1963. The cambium and seasonal development of the phloem ofPyrus malus. Amer. Jour. Bot.50: 149–159.CrossRefGoogle Scholar
  108. Evtusenko, G. A., andL. A. Spota. 1959. The intensity and qualitative trend of photosynthesis in chlorotic apple trees. Fiziol. Rast.6: 679–685.Google Scholar
  109. Fahn, A. 1958. Xylem structure and annual rhythm of development in trees and shrubs of the desert.Tamarix aphylla, T. jordanis var.negevensis, T. gallica var.maris mortui. Trop. Woods109: 81–94.Google Scholar
  110. Farrar, J. 1961. Longitudinal variations in the thickness of the annual ring. Forestry Chron.37: 323–331.Google Scholar
  111. Fielding, J. M. 1960. Branching and flowering characteristics of Monterey pine. Australian For. Timber Bur. Bull. No. 37. (Forestry Abstr. 22, No. 1580.)Google Scholar
  112. Forward, D. F., andN. J. Nolan. 1961. Growth and morphogenesis in the Canadian forest species IV. Further studies of wood growth in branches and main axis ofPinus resinosa Ait. under conditions of open growth, suppression and release. Can. Jour. Bot.39: 411–436.CrossRefGoogle Scholar
  113. Foster, A. S. 1929. Investigations on the morphology and comparative history of development of foliar organs I. The foliage leaves and cataphyllary structures in the horse chestnut (Aesculus hippocastanum L.). Amer. Jour. Bot.16: 441–474, 475–501.CrossRefGoogle Scholar
  114. Freeland, R. O. 1944. Apparent photosynthesis in some conifers during winter. Plant Physiol.19: 179–185.PubMedCrossRefGoogle Scholar
  115. — 1948. Photosynthesis in relation to stomatal frequency and distribution. Plant Physiol.23: 595–600.PubMedCrossRefGoogle Scholar
  116. Friedrich, G. 1962. Ueber das assimilatorische Verhalten der Obstgehölze. Tagungsber. Deut. Akad. Landwirtschaftswiss. Berlin35: 217–227.Google Scholar
  117. —, undG. Schmidt. 1959. Untersuchungen über das assimilatorische Verhalten von Apfel, Birne, Kirsche und Pflaume unter Verwendung einer neu entwickelten Apparatur. Arch. Gartenbau7: 321–346.Google Scholar
  118. ——. 1963. Weitere Untersuchungen über das assimilatorische und respiratorische Verhalten der Obstgehölze. Arch. Gartenbau11: 209–245.Google Scholar
  119. ——. 1964. Weitere Untersuchungen über Assimilation und Atmung beim Apfel. Tagungsber. Deut. Akad. Landwirtschaftswiss. Berlin65: 201–209.Google Scholar
  120. Friesner, R. C. 1943. Correlation of elongation in primary, secondary, and tertiary axes ofPinus strobus andP. resinosa. Butler Univ. Bot. Studies6: 1–9.Google Scholar
  121. —, andJ. J. Jones. 1952. Correlation of elongation in primary and secondary branches ofPinus resinosa. Butler Univ. Bot. Studies10: 119–128.Google Scholar
  122. Fröhlich, H. J. 1961. Jungwuchspflege und Läuterung mit synthetischen Wuchsstoffen. Mitt. Hess. Staatsforstverw. 3 Sauerländer Verlag, Frankfurt a. Main, 56 pp.Google Scholar
  123. Fukuda, Y. 1952. Seasonal changes of the hydrature features of the Manchurian woody plants, especially on the reserve materials. Jour. Sci. Hiroshima Univ. B (Botany)6: 127–177.Google Scholar
  124. Gaastra, P. 1958. Light energy conversion in field crops in comparison with photosynthetic efficiency under laboratory conditions. Medd. Landbouwhogeschool Wageningen58: 1–12.Google Scholar
  125. Gatherum, G. E. 1964. Photosynthesis, respiration, and growth of forest tree seedlings in relation to seed source and environment. Proc. 4th Central States Forest Tree Impr. Conf., pp. 10–18.Google Scholar
  126. Gäumann, E. 1935. Der Stoffhaushalt der Buche (Fagus sylvatica L.) im Laufe eínes Jahres. Ber. Deut. Bot. Ges.53: 366–377.Google Scholar
  127. Gessner, F. 1960. Die Assimilationsbedingungen im tropischen Regenwald. Encycl. Plant Physiol.5: 492–505.Google Scholar
  128. Geurten, I. 1950. Untersuchungen über den Gaswechsel von Baumrinden. Forstwiss. Centralbl.69: 704–743.CrossRefGoogle Scholar
  129. Gibbs, R. D. 1940. Studies in tree physiology II. Seasonal changes in the food reserves of field birch (Betula populifolia Marsh.). Can. Jour. Res.18: 1–9.Google Scholar
  130. Glock, W. S. 1937. What tree rings tell. Carnegie Inst. Wash. Bull.4: 175–178.Google Scholar
  131. —, andS. Agerter. 1963. Anomalous patterns in tree rings. Endeavour22: 9–13.CrossRefGoogle Scholar
  132. -,R. A. Studhalter, andS. R. Agerter. 1960. Classification and multiplicity of growth layers in the branches of trees at the extreme lower forest border. Smithsonian Misc. Coll. Publ. 4421.Google Scholar
  133. Godnev, T. N., andR. M. Rotfarb. 1960. K voprcsu o fotosinteze i obrazovanii hlorofilla pri otricatel’nyh temperaturah. Dokl. Akad. Nauk. SSSR134: 963–964.Google Scholar
  134. Golley, F., H. T. Odum, andR. F. Wilson. 1962. The structure and metabolism of a Puerto Rican red mangrove forest in May. Ecology43: 9–19.CrossRefGoogle Scholar
  135. Goodwin R. H., andD. R. Goddard. 1940. The oxygen consumption of isolated woody tissues. Amer Jour. Bot.27: 234–237.CrossRefGoogle Scholar
  136. Gordon, A. G., andE. Gorham. 1963. Ecological aspects of air pollution from an ironsintering plant at Wawa, Ontario. Can. Jour. Bot.41: 1063–1078.CrossRefGoogle Scholar
  137. Groom, P., andS. E. Wilson. 1925. On the pneumatophores of paludal species ofAmoora, Carapa, andHeretiera. Ann. Bot.39: 9–24.Google Scholar
  138. Gut, R. C. 1938. L’occupation de l’atmosphère. Jour. Forest. Suisse89: 195–202, 236–243, 262–269.Google Scholar
  139. — 1940. Humidité atmosphérique et assimilation. Jour. Forest. Suisse91: 205–208.Google Scholar
  140. Guttenburg, H. von 1927. Studien über das Verhalten des immergrünen Laubblattes der Mediterranflora zu verschiedenen Jahreszeiten. Planta4: 726–779.CrossRefGoogle Scholar
  141. —. 1928. F. A. Preising’s Untersuchungen über den Kohlenhydratstoffwechsel immergrüner Blätter im Laufe eines Jahres. Planta6: 801–808.CrossRefGoogle Scholar
  142. —, undH. Buhr. 1935. Studien über die Assimilation und Atmung mediterraner Macchiapflanzen während der Regen- und Trockenzeit. Planta24: 163–265.CrossRefGoogle Scholar
  143. Hagem, O. 1947. The dry matter increase of coniferous seedlings in winter. Meddel. Vestlanders Forstl. Forsøkssta (Bergen)26: 72–75.Google Scholar
  144. — 1962. Additional observations on the dry matter increase of coniferous seedlings in winter. Meddel. Vestlandets Forstl. Forsøkssta. (Bergen)37: 5.Google Scholar
  145. Hahne, B. 1925. A microchemical study of the seasonal fluctuations of reserve foods of the pear tree. Thesis, Univ. California, Berkeley, California.Google Scholar
  146. Haller, M. H. 1933. Relation of leaf area and position to quality of fruit and to bud differentiation in apples. U. S. Dep. Agr. Tech. Bull. 338.Google Scholar
  147. Harada, S., T. Kanoo, andS. Sakai. 1957. Studies on photosynthesis of the tea plant (Part 2). On the diurnal and seasonal changes in the assimilation rate of the tea plants. Study of Tea17: 1–6.Google Scholar
  148. ———. 1959. Studies on carbon assimilation in the tea plant (Part 3). On carbon assimilation in the nature tea garden. Study of Tea20: 6–9.Google Scholar
  149. Harder, R., P. Filzer, undA. Lorenz. 1932. Ueber Versuche zur Bestimmung der Kohlensäureassimilation immergrüner Wüstenpflanzen während der Trockenzeit in Beni Unif (algerische Sahara). Jahrb. Wiss. Bot.75: 45–177.Google Scholar
  150. Harler, C. R. 1964. The culture and marketing of tea. Oxford Univ. Press, England.Google Scholar
  151. Harley, C. P. 1942. Seasonal growth and dry matter accumulation of Winesap apples. Proc. Amer. Soc. Hort. Sci.40: 165–168.Google Scholar
  152. -,J. R. Macness, M. P. Masure, L. A. Fletcher, andE. S. Degman. 1942. Investigations on the cause and control of biennial bearing of apple trees. U. S. Dep. Agr. Tech. Bull. 792.Google Scholar
  153. Harley, J. L. 1959. The biology of mycorrhiza. Leonard Hill Ltd., London.Google Scholar
  154. Harris, J. M. 1952. Discontinuous growth layers inPinus radiata. New Zealand Forest Service For. Prod. Res. Notes1: 1–10.Google Scholar
  155. Hartenburg, W. 1937. Der Wasser- und Kohlensäurehaushalt tropischer Regenwaldpflanzen in sommerlicher Gewächshauskultur. Jahrb. Wiss. Bot.85: 641–697.Google Scholar
  156. Hatano, K. 1963. Respiration of germinating pine seeds. Plant and Cell Physiol.4: 129–134.Google Scholar
  157. Heinicke, A. J. 1934. Photosynthesis in apple leaves during late fall and its significance in annual bearing. Proc. Amer. Soc. Hort. Sci.32: 77–80.Google Scholar
  158. — 1935. The apparent photosynthesis of an entire apple tree every day from pre-bloom to leaf fall, 1935. Amer. Jour. Bot.22: 903–904.CrossRefGoogle Scholar
  159. — 1937a. How lime sulfur spray affects the photosynthesis of an entire 10- year-old apple tree. Proc. Amer. Soc. Hort. Sci.35: 256–259.Google Scholar
  160. -. 1937b. Some cultural conditions influencing the manufacture of carbohydrates by apple leaves. Proc. New York Hort. Soc., pp. 149–156.Google Scholar
  161. —, andN. F. Childers. 1935. The influence of water deficiency in photosynthesis and transpiration of apple leaves. Proc. Amer. Soc. Hort. Sci.33: 155–159.Google Scholar
  162. -, and -. 1937. The daily rate of photosynthesis, during the growing season of 1935, of a young apple tree of bearing age. Cornell Univ. Agr. Exp. Sta. Memoir 201.Google Scholar
  163. Helms, J. A. 1964. Apparent photosynthesis of Douglas-fir in relation to silvicultural treatment. Forest Sci.10: 432–443.Google Scholar
  164. — 1965. Diurnal and seasonal patterns of net assimilation in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) as influenced by environment. Ecology46: 698–708.CrossRefGoogle Scholar
  165. Hellmers, H. 1964. An evaluation of the photosynthetic efficiency of forests. Quart. Rev. Biol.39: 249–259.CrossRefGoogle Scholar
  166. -, andJ. Bonner. 1960. Photosynthetic limits of forest tree yields. Proc. Soc. Amer. Foresters, 1959, pp. 32–35.Google Scholar
  167. Helson, V. A. 1960. Effects of ryania and ryanodine in the apparent photosynthesis of McIntosh apple leaves. Can. Jour. Plant. Sci.40: 18–24.Google Scholar
  168. Hepting, G. H. 1945. Reserve food storage in shortleaf pine in relation to little-leaf disease. Phytopathology35: 106–119.Google Scholar
  169. Hida, M., S. Ono, andE. Harada. 1962. Studies on the sugars of the leaves of conifers. Bot. Mag. Tokyo75: 153–157.Google Scholar
  170. Hiesey, W. M., andH. W. Milner. 1965. Physiology of ecological races and species. Ann. Rev. Plant Physiol.16: 203–216.CrossRefGoogle Scholar
  171. Hill, G. P. 1955. A technique for the study of the physiology of the sieve tubes. M. S. Thesis, Univ. Nottingham, England.Google Scholar
  172. Hlebnikova, N. A. 1957. Photosynthesis in woody plants in the arid southeastern USSR Vsesoyuz Konf. po Fotosintezu. Prob. Photosynthesis Rep. 2nd Conf.V2: 834–844. 45/V965 Ae. (Transl. from Problemy Fotosinteza, Doklady.)Google Scholar
  173. — 1958a. Transpiracija i fotosintezi drevesnyh i kustarnikovyh rastenij v uslovijah prikaspipkoj nizmennosti. Trud. Inst. Les.38: 140–160.Google Scholar
  174. — 1958b. Osobennosti fotosinteza derev’ev v raznyh castjah nasazdenija. Trud. Inst. Les.41: 71–86.Google Scholar
  175. Hoffman, M. B. 1932. The effect of certain spray materials on the CO2 assimilation by McIntosh apple leaves. Proc. Amer. Soc. Hort. Sci.29: 389–393.Google Scholar
  176. — 1933. Carbon dioxide assimilation by apple leaves as affected by lime sulphur sprays. II. Field experiments. Proc. Amer. Soc. Hort. Sci.30: 169–175.Google Scholar
  177. — 1934. The effects of several summer oils on the carbon dioxide assimilation by apple leaves. Proc. Amer. Soc. Hort. Sci.32: 104–106.Google Scholar
  178. Holmsgaard, E. 1955. Tree ring analyses of Danish forest trees. Rep. Danish Forest Exp. Sta. 22.Google Scholar
  179. — 1962. Influence of weather on growth and reproduction of beech. Comm. Inst. Forestalia Fenniae55: 1–5.Google Scholar
  180. —, andH. C. Olsen. 1960. Vejrets intlydelse på bøgens frugtsaetning. Det. forstl. Forsøgsvaesen i Danmark26: 347–370.Google Scholar
  181. Howlett, F. S. 1923. Nitrogen and carbohydrate composition of the developing flowers and young fruits of the apple. Proc. Amer. Soc. Hort. Sci.20: 31–37.Google Scholar
  182. — 1924. The chemical composition of developing flowers and young fruits from weak and vigorous spurs of the apple. Proc. Amer. Soc. Hort. Sci.21: 194–199.Google Scholar
  183. -. 1926. The nitrogen and carbohydrate composition of the developing flowers and young fruits of the apple. Cornell Agr. Exp. Sta. Mem. 99.Google Scholar
  184. Huber, B. 1952. Über die vertikale Reichweite vegetationsbedingter Tagesschwankungen im CO2-Gehalt der Atmosphäre. Forstwiss. Centralbl.71: 372–380.CrossRefGoogle Scholar
  185. — 1958. Recording gaseous exchanges under field conditions.In: The physiology of forest trees, Ed. by K. V. Thimann, Ronald Press, New York, Chapter 9.Google Scholar
  186. —, undH. Polster. 1955. Zur Frage der physiologischen Ursachen der unterschiedlichen Stofferzeugung von Pappelklonen. Biol. Zentralbl.74: 370–420.Google Scholar
  187. —, undJ. Pommer. 1954. Zur Frage eines jahreszeitlichen Ganges im CO2-Gehalt der Atmosphäre. Angew. Bot.28: 53–62.Google Scholar
  188. —, undJ. Rüsch. 1961. Ueber den Anteil von Assimilation und Atmung bei Pappelblättern. Ber. Deut. Bot. Ges.74: 55–63.Google Scholar
  189. Hull, R. J., andO. A. Leonard. 1964. Physiological aspects of parasitism in mistletoes (Arceuthobium andPhoradendron). I. The carbohydrate nutrition of mistletoe. Plant Physiol.39: 996–1007.PubMedCrossRefGoogle Scholar
  190. Humphries, E. C. 1947. Wilt of cacao fruits (Theobroma cacao). IV. Seasonal variation in the carbohydrate reserves of the bark and wood of the cacao tree. Ann. Bot.11: 219–244.Google Scholar
  191. Hyre, R. A. 1939. The effect of sulfur fungicides on the photosynthesis and respiration of apple leaves. Cornell Agr. Exp. Sta. Mem. 222.Google Scholar
  192. Ishibe, O. 1935. The seasonal changes in starch and fat reserves of some woody plants. Kyoto Imp. Univ. Bot. Inst. Publ. 42.Google Scholar
  193. Iwanoff, L. A., undN. L. Kossowitsch. 1929. Ueber die Arbeit des Assimilations apparates verschiedener Baumarten. I. Die Kiefer (Pinus silvestris). Planta8: 427–464.CrossRefGoogle Scholar
  194. —, andI. M. Orlova. 1931. (On photosynthesis of conifers in winter.) (In Russian.) Jour. Soc. Bot. Russie16: 139–157.Google Scholar
  195. Jahnke, L. S., andD. B. Lawrence. 1965. Influence of photosynthetic crown structure on potential productivity of vegetation based primarily on mathematical models. Ecology46: 319–326.CrossRefGoogle Scholar
  196. Jarvis, P. G., andM. S. Jarvis. 1963. The water relations of tree seedlings. I. Growth and water use in relation to soil water potential. Physiol. Plantarum16: 215–235.CrossRefGoogle Scholar
  197. ——. 1964. Growth rates of woody plants. Physiol. Plantarum17: 654–666.CrossRefGoogle Scholar
  198. Jazewitsch, W. von. 1953. Jahrringschronologie der Spessart-Buchen. Forstwiss. Centralbl.72: 238–248.CrossRefGoogle Scholar
  199. Johannson, N. 1933. The relation between the respiration of the tree stem and its growth. Svenska Skogsvardsforen Tidskr.31: 53–134.Google Scholar
  200. Johnson, L. P. V. 1944. Sugar production by white and yellow birches. Can. Jour. Res. C22: 1–6.Google Scholar
  201. Jones, C. H., andJ. L. Bradlee. 1933. The carbohydrate contents of the maple tree. Vermont Agr. Exp. Sta. Bull. 358.Google Scholar
  202. Jones, W. W., andC. B. Cree. 1954. Effect of time of harvest on yield, size and grade of Valencia oranges. Proc. Amer. Soc. Hort. Sci.64: 139–145.Google Scholar
  203. —,T. W. Embleton, M. L. Steinacker, andC. B. Cree. 1964. The effect of time of fruit harvest on fruiting and carbohydrate supply in the Valencia orange. Proc. Amer. Soc. Hort. Sci.84: 152–157.Google Scholar
  204. —, andM. L. Steinacker. 1951. Seasonal changes in concentration of sugar and starch in leaves and twigs of citrus trees. Proc. Amer. Soc. Hort. Sci.58: 1–4.Google Scholar
  205. Jozefaciuk, Wanda. 1962. Observations on the influence of meteorological conditions on the height increment of forest trees. Int. Jour. Biometeorology6: 55–61.CrossRefGoogle Scholar
  206. Jumelle, H. 1891. Sur le dégagement d’oxygène par les plantes, aux basses températures. Compt. Rend. Acad. Sci. Paris112: 1462–1465.Google Scholar
  207. Katz, M.,et al. 1939. Effect of sulfur dioxide on vegetation. Natl. Res. Council Canada, Ottawa.Google Scholar
  208. — 1949. Sulfur dioxide in the atmosphere and its relation to plant life. Ind. Eng. Chem.41: 2450–2465.CrossRefGoogle Scholar
  209. Kazaryan, V. O., andV. A. Palandzhyan. 1956. The migration paths of stored carbohydrates from the wood into the growing shoots of plants. Doklady Akad. Nauk. Armyanskoi SSR23: 81–85.Google Scholar
  210. Keller, H. 1958. Beiträge zur Erfassung der durch schweflige Säure hervorgerufenen Rauchschäden an Nadelhölzern. Forstwiss. Centralbl. Beiheft 10 Parey, Berlin-Hamburg.Google Scholar
  211. Keller, T. 1964. Beeinflussen Insektizide die Photosynthese und Transpiration von Pappelblättern. Anz. Schädlingskde37: 87–89.CrossRefGoogle Scholar
  212. — 1965a. Ueber den winterlichen Gaswechsel der Koniferen im Schweizerischen Mittelland. Schweiz. Zeitschr. Forstwes.116: 719–729.Google Scholar
  213. — 1965b. Modellversuche zur Düngung von Ballenpflanzen. Schweiz. Zeitschr. Forstwes.116: 243–255.Google Scholar
  214. — 1966. Ueber den Einfluss von transpirationshemmenden Chemiealien (Antitranspirantien) auf Transpiration, CO2-Aufnahme und Wurzelwachstum von Jungfichten. Forstwiss. Centralbl.85: 65–79.CrossRefGoogle Scholar
  215. —, undW. Koch. 1962a. Der Einfluss der Mineralstoffernährung auf CO2-Gaswechsel und Blattpigmentgehalt der Pappel. I. Stickstoff. Mitt. Schweiz. Anst. Forstl. Versuchswesen38: 253–282.Google Scholar
  216. ——. 1962b. Der Einfluss der Mineralstoffernährung auf CO2-Gaswechsel und Blattpigmentgehalt der Pappel. II. Eisen. Mitt. Schweiz. Anst. Forstl. Versuchswesen38: 283–318.Google Scholar
  217. ——. 1964. The effect of iron chelate fertilization of poplar upon CO2 uptake, leaf size, and content of leaf pigments and iron. Plant and Soil20: 116–126.CrossRefGoogle Scholar
  218. —, undJ. Wehrmann. 1963. CO2-Assimilation, Wurzelatmung und Ertrag von Fichten- und Kiefernsämlingen bei unterschiedlicher Mineralstoffernährung. Mitt. Schweiz. Anst. Forstl. Versuchswesen39: 217–242.Google Scholar
  219. Kemp, M. 1943. Morphological and ontogenetic studies inTorreya californica Torr. I. The vegetative apex of the megasporangiate tree. Amer. Jour. Bot.30: 504–517.CrossRefGoogle Scholar
  220. Kienholz, R. 1941. Seasonal course of height growth in some hardwoods in Connecticut. Ecology22:249–258.CrossRefGoogle Scholar
  221. Kikuya, A. 1953. Seasonal changes in starch reserves in the xylem parenchyma of “Kanara” (Quercus serrata). Jour. Jap. For. Soc.35: 191–193.Google Scholar
  222. Kliewer, W. M. 1964. Influence of environment on metabolism of organic acids and carbohydrates inVitis vinifera. I. Temperature. Plant Physiol.39: 869–880.CrossRefGoogle Scholar
  223. Knight, H., J. C. Chamberlain, andC. D. Samuels. 1929. On some limiting factors in the use of saturated petroleum oils as insecticides. Plant Physiol.4: 299–321.PubMedCrossRefGoogle Scholar
  224. Koch, W. 1957. Der Tagesgang der “Produktivität der Transpiration.” Planta48: 418–452.Google Scholar
  225. — 1963. Die Kohlensäure als Standortsfaktor. Allg. Forst-u. Jagdzeitung134: 54–57.Google Scholar
  226. —, undT. Keller. 1961. Der Einfluss von Alterung und Abschneiden auf den CO2-Gaswechsel von Pappelblättern. Ber. Deut. Bot. Ges.74: 64–74.Google Scholar
  227. Kodenko, A. N., andN. P. Erygina. 1953. The effect of side dressings on photosynthetic activity and yield of vines. (In Russian.) Vinodelic i Vinogradarstvo8: 41–42.Google Scholar
  228. Kolesnicenko, M. V. 1963. The effect of acetaldehyde and turpentine on photosynthesis ofQuercus robur andBetula verrucosa. (In Russian.) Dokl. Akad. Nauk. SSSR145: 457–459.Google Scholar
  229. Konovalov, I. N., andE. N. Mikhaleva. 1955. The use of labelled carbon (C14) in studying the physiological adaptation of plants to their environment. Bot. Zhurnal40: 411–414.Google Scholar
  230. ——,F. L. Shchepot’ev, andA. I. Pabegailo. 1957. Peculiarities of photosynthesis in Persian walnut trees associated with geographic origin and readaptation to new habitats. Vsesoyuz. Konf. po Fotosintezu. Prob. Photosynthesis Rep. 2nd Conf.V2: 854–866. 1957. 45/V965 Ae. (Transl. from Problemy Fotosinteza. Doklady.)Google Scholar
  231. Kossovitch, N. I. 1957. Photosynthesis and respiration in various species belonging to several genera of woody plants and the relation between these processes as an indicator of growth and crop yielding capacity. Vsesoyuz. Konf. po Fotosintezu. Prob. Photosynthesis Rep. 2nd Conf.V2: 903–914. 45/V965 Ae. (Transl. from Problemy Fotosinteza. Doklady.)Google Scholar
  232. Kostytschew, S., M. Kudriavzewa, W. Moissejewa, undM. Smirnowa. 1926. Der tägliche Verlauf der Photosynthese bei Landpflanzen. Planta1: 679–699.CrossRefGoogle Scholar
  233. Kozlowski, T. T. 1949. Light and water in relation to growth and competition of Piedmont forest tree species. Ecol. Monogr.19: 207–231.CrossRefGoogle Scholar
  234. — 1955. Tree growth, action and interaction of soil and other factors. Jour. Forestry53: 508–512.Google Scholar
  235. — 1957. Effect of continuous high light intensity on photosynthesis of forest tree seedlings. Forest Sci.3: 220–224.Google Scholar
  236. — 1958. Water relations and growth of trees. Jour. Forestry56: 498–502.Google Scholar
  237. -. 1960. Some problems in the use of herbicides in forestry. Proc. 17th North Central Weed Control Conf., pp. 1–10.Google Scholar
  238. — 1961. Challenges in forest production—physiological implications.In: Challenges of Forestry, State University, College of Forestry, Syracuse, New York, pp. 91–124.Google Scholar
  239. — 1962a. Photosynthesis, climate, and tree growth.In: Tree Growth, Ed. by T. T. Kozlowski, Ronald Press, New York, Chapter 8.Google Scholar
  240. -. 1962b. Characteristics of shoot growth in forest trees. Proc. Int. Union Forest Res. Org. 13th Kongr. 2 Teil, Band 1, pp. 22–25.Google Scholar
  241. — 1963a. Growth characteristics of forest trees. Jour. Forestry61: 655–662.Google Scholar
  242. — 1963b. Characteristics and improvement of forest growth. Adv. Frontiers of Plant Sci.2: 73–136.Google Scholar
  243. -. 1963c. Physiological implications in tree improvement. Proc. World Consultation on Forest Genetics and Tree Improvement (Stockholm), FAO/Forgen 63–5/1.Google Scholar
  244. — 1964a. Water metabolism in plants. Harper and Row, New York.Google Scholar
  245. — 1964b. Shoot growth in woody plants. Bot. Rev.30: 335–392.CrossRefGoogle Scholar
  246. — 1965. Variable toxicity of triazine herbicides. Nature205: 104–105.CrossRefGoogle Scholar
  247. —, andJ. Johanna Clausen. 1965a. Food relations in shoot growth of woody plants. Bull. Ecol. Soc. Amer.46: 92.Google Scholar
  248. ——. 1965b. Changes in moisture contents and dry weights of buds and leaves of forest trees. Bot. Gaz.126: 20–26.CrossRefGoogle Scholar
  249. ——. 1966a. Anatomical responses of pine needles to herbicides. Nature209: 486–487.CrossRefGoogle Scholar
  250. ——. 1966b. Shoot growth characteristics of heterophyllous woody plants. Can. Jour. Bot.44: 827–843.CrossRefGoogle Scholar
  251. ——. 1966c. Seasonal development of long- and short-shoot components of tamarack. (Abstr.) Bull. Ecol. Soc. Amer.47: 113–114.Google Scholar
  252. —, andJ. C. Cooley. 1961. Root grafting in northern Wisconsin. Jour. Forestry59: 105–107.Google Scholar
  253. —, andR. F. Evert. 1966. Effect of phloem blocks on cambial activity ofPopulus tremuloides. Amer. Jour. Bot.53: 616.Google Scholar
  254. —, andA. C. Gentile. 1958. Respiration of white pine buds in relation to oxygen availability and moisture content. Forest Sci.4: 147–152.Google Scholar
  255. —,J. F. Hughes, andL. Leyton. 1966. Patterns of water movement in dormant gymnosperm seedlings. Biorheology3: 77–85.Google Scholar
  256. —, andJ. E. Kuntz. 1963. Effect of simazine, atrazine, propazine, and eptam on growth of pine seedlings. Soil Sci.95: 164–174.CrossRefGoogle Scholar
  257. —, andT. A. Peterson. 1962. Seasonal growth of dominant, intermediate and suppressed red pine trees. Bot. Gaz.124: 146–154.CrossRefGoogle Scholar
  258. -, andS. Sasaki. 1966. Influence of active and inert ingredients of herbicide formulations on respiration of young pine seedlings. (Abstr.) Plant Physiol. (Proc. Ann. Meet.) Suppl.: vii.Google Scholar
  259. —, andW. H. Scholtes. 1948. Growth of roots and root hairs of pine and hardwood seedlings in the Piedmont. Jour. Forestry46: 750–754.Google Scholar
  260. —, andF. X. Schumacher. 1943. Estimation of stomated foliar surface of pines. Plant Physiol.18: 122–127.PubMedCrossRefGoogle Scholar
  261. —, andJ. H. Torrie. 1965. Effect of soil incorporation of herbicides on seed germination and growth of pine seedlings. Soil Sci.100: 139–146.CrossRefGoogle Scholar
  262. —, andR. C. Ward. 1957a. Seasonal height growth of conifers. Forest Sci.3: 61–66.Google Scholar
  263. ——. 1957b. Seasonal height growth of deciduous trees. Forest Sci.3: 168–174.Google Scholar
  264. ——. 1961. Shoot elongation characteristics of forest trees. Forest Sci.7: 357–368.Google Scholar
  265. —, andC. H. Winget. 1964. The role of reserves in leaves, branches, stems, and roots on shoot growth of red pine. Amer. Jour. Bot.51: 522–529.CrossRefGoogle Scholar
  266. ——, andJ. H. Torrie. 1962. Daily radial growth of oak in relation to maximum and minimum temperature. Bot. Gaz.124: 9–17.CrossRefGoogle Scholar
  267. Kramer, P. J. 1943. Amount and duration of growth of various species of tree seedlings. Plant Physiol.18: 239–251.PubMedCrossRefGoogle Scholar
  268. — 1949. Plant and soil water relationships. McGraw-Hill Book Co., New York.Google Scholar
  269. — 1958. Photosynthesis of trees as affected by their environment.In: The Physiology of Forest Trees, Ed. by K. V. Thimann, Ronald Press, New York, Chapter 8.Google Scholar
  270. — 1962. The role of water in tree growth.In: Tree Growth, Ed. by T. T. Kozlowski, Ronald Press, New York. Chapter 10.Google Scholar
  271. — 1964. The role of water in wood formation.In: The formation of wood in forest trees, Ed. by M. H. Zimmermann, Academic Press. New York. pp. 519–532.Google Scholar
  272. —, andW. S. Clark. 1947. A comparison of photosynthesis in individual pine needles and entire seedlings at various light intensities. Plant Physiol.22: 51–57.PubMedCrossRefGoogle Scholar
  273. —, andJ. P. Decker. 1944. Relation between light intensity and rate of photosynthesis of loblolly pine and certain hardwoods. Plant Physiol.19: 350–358.PubMedCrossRefGoogle Scholar
  274. —, andR. H. Hodgson. 1954. Differences between mycorrhizal and non mycorrhizal roots of loblolly pine. Proc. 8th Int. Bot. Congr.13: 133–134.Google Scholar
  275. —, andT. T. Kozlowski. 1960. Physiology of trees. McGraw Hill Book Co., New York.Google Scholar
  276. Kraybill, H. R., J. T. Sullivan, andL. P. Miller. 1931. Seasonal changes in the composition of Stayman apple trees. I. Carbohydrates. Proc. Amer. Soc. Hort. Sci.27: 206.Google Scholar
  277. Krueger, K. W., andW. K. Ferrell. 1962. Photosynthetic and respiration rates of Douglas-fir seedlings from a Coastal and a Rocky Mountain seed source. Bull. Ecol. Soc. Amer.43: 83.Google Scholar
  278. ——. 1965. Comparative photosynthetic and respiratory responses to temperature and light byPseudotsuga menziesii var.menziesii and var.glauca seedlings. Ecology46: 794–801.CrossRefGoogle Scholar
  279. Kulman, H. M. 1965. Effects of artificial defoliation of pine on subsequent shoot and needle growth. Forest Sci.11: 90–98.Google Scholar
  280. Kursanov, A. L. 1961. The transport of organic substances in plants. Endeavour20: 19–25.CrossRefGoogle Scholar
  281. Kurssanow, A. L. 1933. Ueber den Einfluss der Kohlenhydrate auf den Tagesverlauf der Photosynthese. Planta20: 535–548.CrossRefGoogle Scholar
  282. — 1934. Die Photosynthese grüner Früchte und ihre Abhängigkeit von der normalen Tätigkeit der Blätter. Planta22: 240–250.CrossRefGoogle Scholar
  283. Ladefoged, K. 1952. The periodicity of wood formation. Dansk Biol. Skr.7: 1–98.Google Scholar
  284. Lanner, R. M. 1961. Living stumps in the Sierra Nevada. Ecology42: 170–173.CrossRefGoogle Scholar
  285. Larcher, W. 1960. Transpiration and photosynthesis of detached leaves and shoots ofQuercus pubescens andQ. ilex during desiccation under standard conditions. Bull. Res. Counc. Israel8D: 213–224.Google Scholar
  286. — 1961. Zur Assimilationsökologie der immergrünenOlea europaea undQuercus ilex und der sommergrünenQuercus pubescens im nördlichen Gardaseegebiet. Planta56: 607–617.CrossRefGoogle Scholar
  287. — 1963a. Die Eignung abgeschnittener Zweige und Blätter zur Bestimmung des Assimilationsvermögens. Planta60: 1–18.CrossRefGoogle Scholar
  288. — 1963b. Die Leistungsfähigkeit der CO2-Assimilation höherer Pflanzen unter Laboratoriumsbedingungen und am natürlichen Standort. Mitteil. der Floristisch-soziologischen Arbeitsgemeinschaft10: 20–33.Google Scholar
  289. — 1965. The influence of water stress on the relationship between CO2 uptake and transpiration.In: Water stress in plants, Ed. by B. Slavik, Czechoslovak Acad. Sci. (Prague), pp. 184–194.Google Scholar
  290. Larson, P. R. 1956. Discontinuous growth rings in suppressed slash pine. Trop. Woods104: 80–89.Google Scholar
  291. — 1962. Auxin gradients and the regulation of cambial activity.In: Tree Growth, Ed. by T. T. Kozlowski, Ronald Press, New York, Chapter 5.Google Scholar
  292. -. 1963. Stem form development of forest trees. Forest Sci. Monograph 5.Google Scholar
  293. — 1964. Contribution of different-aged needles to growth and wood formation of young red pines. Forest Sci.10: 224–238.Google Scholar
  294. Lemée, G. 1955. Influence de l’alimentation en eau et de l’ombrage sur l’économie hydrique et la photosynthèse du cacaoyer. Agron. Trop.10: 592–603.Google Scholar
  295. Leonard, E. R. 1938. Preliminary observations on the carbohydrate content of apple leaves on different rootstocks. Ann. Rep. East Mailing Res. Sta. for 1937, pp. 173–180.Google Scholar
  296. Leopold, A. C. 1964. Plant growth and development. McGravv Hill, New York. Leshem, B. 1965. The annual activity of intermediary roots of alleppo pine. Forest Sci.11: 291–298.Google Scholar
  297. Lewis, L. N., C. W. Coggins, Jr., andH. Z. Hield. 1964. The effect of biennial bearing and NAA on the carbohydrate and nitrogen composition of Wilking mandarin leaves. Proc. Amer. Soc. Hort. Sci.84: 147–157.Google Scholar
  298. Lieth, H. 1960. Ueber den Lichtkompensationspunkt bei Landpflanzen. Planta54: 530–554, 555–576.CrossRefGoogle Scholar
  299. Lilleland, O., andJ. G. Brown. 1936. Growth study of the apricot fruit. III. Effect of girdling. Proc. Amer. Soc. Hort. Sci.34: 264–271.Google Scholar
  300. Loomis, W. E. 1935. Translocation and growth balance in woody plants. Ann. Bot.49: 247–272.Google Scholar
  301. — 1938. Relation of condensation reactions to meristematic development. Bot. Gaz.99: 814–824.CrossRefGoogle Scholar
  302. Loustalot, A. J. 1942. The effects of Bordeaux mixture and lead arsenate on apparent photosynthesis and transpiration of pecan leaves. Proc. Amer. Soc. Hort. Sci.40: 68.Google Scholar
  303. — 1943. Effect of ringing the stem on photosynthesis, transpiration, and respiration of pecan leaves. Proc. Amer. Soc. Hort. Sci.42: 127–142.Google Scholar
  304. — 1945. Influence of soil moisture conditions on apparent photosynthesis and transpiration of pecan leaves. Jour. Agr. Res.71: 519–532.Google Scholar
  305. —,F. W. Burrows, S. G. Gilbert, andA. Nason. 1945. Effect of copper and zinc deficiencies on the photosynthetic activity of the foliage of young tung trees. Plant Physiol.20: 283–288.PubMedCrossRefGoogle Scholar
  306. —,S. G. Gilbert, andM. Drosdoff, 1950. The effect of nitrogen and potassium levels in tung seedlings on growth, apparent photosynthesis and carbohydrate composition. Plant Physiol.25: 394–412.PubMedCrossRefGoogle Scholar
  307. Maggs, D. H. 1963. The reduction in growth of apple trees brought about by fruiting. Jour. Hort. Sci.38: 119–128.Google Scholar
  308. Magness, J. R. 1929. Relation of leaf area to size and quality in apples. Proc. Amer. Soc. Hort. Sci.25: 285–288.Google Scholar
  309. -,F. L. Overley, andW. A. Luce. 1931. Relation of foliage to fruit size and quality in apples and pears. Washington State College Agr. Exp. Sta. Bull. 249.Google Scholar
  310. Martin, W. E. 1942. Physiological studies of yield, quality and maturity of Marsh grapefruit in Arizona. Arizona Agr. Exp. Sta. Tech. Bull.97: 1–48.Google Scholar
  311. Materna, J., undR. Kohout. 1964. Die Ausnutzung des Kohlenstoffes aus Na2CO3 in Assimilationsorganen der Holzarten. Naturwissenschaften51: 116–117.CrossRefGoogle Scholar
  312. Matthews, J. D. 1963. Factors affecting the production of seed by forest trees. Forestry Abstr.24: i-xiii.Google Scholar
  313. McDermott, J. 1941. Food reserves of trees—Liriodendrontulipifera L. yellow poplar. Plant Physiol.16: 415–418.PubMedCrossRefGoogle Scholar
  314. McGregor, W. H. D., R. M. Allen, andP. J. Kramer. 1961. The effect of photoperiod on growth, photosynthesis, and respiration of loblolly pine seedlings from two geographic sources. Forest Sci.7: 342–348.Google Scholar
  315. —, andP. J. Kramer. 1963. Seasonal trends in rates of photosynthesis and respiration of loblolly pine. Amer. Jour. Bot.50: 760–765.CrossRefGoogle Scholar
  316. McLean, F. T. 1920. Field studies of the carbon dioxide absorption of coconut leaves. Ann. Bot.34: 367–389.Google Scholar
  317. McMillan, R. T., andJ. M. Riedhart. 1964. The influence of hydrocarbons on photosynthesis of citrus leaves. Proc. Florida State Hort. Soc.77: 15–21.Google Scholar
  318. Merrill, S., andW. W. Kilby. 1952. Effect of cultivation, irrigation, fertilization and other cultural treatments on growth of newly planted tung trees. Proc. Amer. Soc. Hort. Sci.59: 69–81.Google Scholar
  319. Miller, R., undJ. Rüsch. 1960. Zur Frage der Kohlensäureversorgung des Waldes. Forstwiss. Centralbl.79: 42–62.CrossRefGoogle Scholar
  320. Millington, W. F., andJ. E. Gunckel. 1950. Structure and development of the vegetative shoot tip ofLiriodendron tulipifera L. Amer. Jour. Bot.37: 326–335.CrossRefGoogle Scholar
  321. Mitra, S. K. 1921. Seasonal changes and translocation of carbohydrate materials in fruit spurs and two-year-old seedlings of apple. Ohio Jour. Sci.21: 89–99.Google Scholar
  322. Mitscherlich, G., K. G. Kern, undE. Künstle. 1963. Untersuchungen über den Kohlensäuregehalt der Waldluft in Plenterwald and Fichtenreinbestand. Allg. Forst-u. Jagdzeitung134: 281–290.Google Scholar
  323. Mittler, T. E. 1958a. Studies in the feeding and nutrition ofTuberolachnus salignus. II. Jour. Exp. Bot.35: 74–84.Google Scholar
  324. — 1958b. Sieve-tube sap via aphid stylets.In: The physiology of forest trees, Ed. by K. V. Thimann, Ronald Press, New York, Chapter 19.Google Scholar
  325. Mochizuki, T. 1962. Studies on the elucidation of factors affecting the decline in tree vigor in apples as induced by fruit load. Bull. For. Agr. Hirosaki Univ. No.8: 40–124.Google Scholar
  326. —, andS. Hanada. 1957. The anisophylly on the lateral shoots of apple trees and the effect of soil moisture. Bull. Fac. Agr. Hirosaki Univ.3: 1–8.Google Scholar
  327. ——. 1958. The effect of nitrogen on the formation of the anisophylly on the terminal shoots of apple trees. Soil and Plant Food4: 68–74.Google Scholar
  328. Möller, C. M. 1946. Untersuchungen über Laubmenge, Stoffverlust und Stoffproduktion des Waldes. Det Forstl. Forsøgsvaesen i Danmark17: 1–287.Google Scholar
  329. —,D. Müller, andJ. Nielsen. 1954. Graphic presentation of dry matter production of European beech. Det Forstl. Forsøgsvaesen i Danmark21: 327–335.Google Scholar
  330. Monselise, S. P. 1953. Growth analysis of citrus seedlings. II. A comparison between sweet lime, rough lemon and sour orange. Palestine Jour. Bot.8: 125–132.Google Scholar
  331. Moore, E. 1909. The study of winter buds with reference to their growth and leaf content. Bull. Torrey Bot. Club.36: 117–145.CrossRefGoogle Scholar
  332. Moose, C. A. 1938. Chemical and spectroscopic analysis of phloem exudate and parenchyma sap from several species of plants. Plant Physiol.13: 365–380.PubMedCrossRefGoogle Scholar
  333. Morris, R. F. 1951. The effects of flowering on the foliage production and growth of balsam fir. Forestry Chron.27: 40–57.Google Scholar
  334. Motley, J. A. 1949. Correlation of elongation in white and red pine with rainfall. Butler Univ. Bot. Studies9: 1–8.Google Scholar
  335. Motorina, M. N. 1958. Photosynthesis and respiration of vines under conditions of the Moscow region. Izr. Timiryazer Seljsk Akad.1: 123–140.Google Scholar
  336. Muelder, D. W., andR. Schaeffer. 1961. On the correlation between weather and annual growth layers in trees, a contribution to the theory. Proc. 13th Congr. Int. Union Forest Res. Org. Teil 2, BandI: 21–2/4.Google Scholar
  337. Müller, A. 1904. Die Assimilationsgrösse bei Zucker- und Stärkeblättern. Jahrb. Wiss. Bot.40: 443–498.Google Scholar
  338. Müller, D., etJ. Nielsen. 1965. Production brute, pertes par respiration et production nette dans la forêt ombrophile tropicale. Det Forstl. Forsøgsvaesen i Danmark29: 69–160.Google Scholar
  339. Murneek, A. E. 1925. Is fruiting of the apple an exhaustive process. Proc. Amer. Soc. Hort. Sci.22: 196–200.Google Scholar
  340. — 1932. Relation of leaf area to fruit size and food reserves in apple seeds and branches. Proc. Amer. Soc. Hort. Sci.29: 230–234.Google Scholar
  341. — 1933. Carbohydrate storage in apple trees. Proc. Amer. Soc. Hort. Sci.30: 319–321.Google Scholar
  342. -. 1942. Quantitative distribution of nitrogen and carbohydrates in apple trees. Missouri Agr. Exp. Sta. Res. Bull. 348.Google Scholar
  343. Murphy, L. M. 1939. The effect of certain fungicides on the photosynthetic activity of sour cherry leaves. Proc. Amer. Soc. Hort. Sci.37: 375–378.Google Scholar
  344. Myers, C. A. 1963. Vertical distribution of annual increment in thinned ponderosa pine. Forest Sci.9: 394–404.Google Scholar
  345. Navarette, S. C. 1954. Cenizas totales y algunos constituyentes carbohidratados y nitrogenadaos de lasraices de cafetos en fructification y sin frutos a traves de la estacion. Bol. Inf. Colombia5: 22–31. Hort. Abstr.24: No. 4330.Google Scholar
  346. Neff, M. S., andE. N. O’Rourke, Jr. 1951. Factors affecting the initiation of new roots in newly transplanted tung trees. Proc. Amer. Soc. Hort. Sci.57: 186–190.Google Scholar
  347. Neger, F. W., undG. Lakon. 1914. Studien über den Einfluss von Abgasen auf die Lebensfunktionen der Bäume. Mitt Königl. Sächs. Forstl. Vers. Anst. Tharandt1: 176–233.Google Scholar
  348. Negisi, K., andT. Satoo. 1954a. The effect of drying of soil on apparent photosynthesis, transpiration, carbohydrate reserves and growth of Akamatu (Pinus densiflora Sieb. et Zucc). Jour. Jap. For. Soc.36: 65–70.Google Scholar
  349. ——. 1954b. Influence of soil moisture on photosynthesis and respiration of seedlings of Akamatu (Pinus densiflora Sieb, et Zucc. and Sugi (Cryptomeria japonica D. Don). Jour. Jap. For. Soc.36: 113–117.Google Scholar
  350. ——. 1955. The effect of detachment on apparent photosynthesis of Akamatu (Pinus densiflora) and Matebasii (Lithocarpus edulis) seedlings. Bull. Tokyo Univ. For.48: 129–138.Google Scholar
  351. ——. 1961. Effect of temperature upon photosynthesis and respiration of Akamatu (Pinus densiflora Sieb et Zucc.), Sugi (Cryptomeria japonica D. Don) and Hinoki (Chamaecyparis obtusa Sieb et Zucc). Jour. Jap. For. Soc.43: 336–343.Google Scholar
  352. —,H. Yamaguchi, K. Yagi, andT. Satoo. 1961. Photosynthesis of Sugi (Cryptomeria japonica) in early spring. Jour. Jap. For. Soc.43: 233–240.Google Scholar
  353. Neish, A. C. 1958. Seasonal changes in metabolism of spruce leaves. Can. Jour. Bot.36: 649–662.CrossRefGoogle Scholar
  354. Nelson, C. D. 1964. The production and translocation of photosynthate −C14 in conifers.In: The formation of wood in forest trees, Ed. by M. H. Zimmermann, Academic Press, New York, pp. 243–257.Google Scholar
  355. Neubauer, H. F. 1936. Untersuchungen zur Oekologie der Photosynthese einheimischer Laubgehölze in Wald und Garten. Gartenbauwissenschaften10: 380–421.Google Scholar
  356. Neuwirth, G. 1959. Der CO2-Stoffwechsel einiger Koniferen während des Knospenaustriebes. Biol. Zentralbl.78: 559–584.Google Scholar
  357. —, undK. H. Fritzsche. 1964. Untersuchungen über den Einfluss verschiedener Düngergaben auf das gasstoffwechselökologische Verhalten einjähriger Pappel-Steckholzaufwüchse. Arch. Forstwes.13: 233–246.Google Scholar
  358. Nightingale, G. T. 1935. Effects of temperature on growth, anatomy, and metabolism of apple and peach roots. Bot. Gaz.96: 581–639.CrossRefGoogle Scholar
  359. Nomoto, N., H. Kasanaga, andM. Monsi. 1959. Dry matter production byChamaecyparis pisifera in winter. Bot. Mag. Tokyo72: 450–455.Google Scholar
  360. Nutman, F. J. 1937. Studies of the physiology ofCoffea arabica. II. Stomatal movements in relation to photosynthesis under natural conditions. Ann. Bot.1: 681–694.Google Scholar
  361. Onaka, F. 1950. The longitudinal distribution of radial increments in trees. Kyoto Univ. Forestry Bull.18: 1–53.Google Scholar
  362. O’Neil, L. C. 1962. Some effects of artificial defoliation on the growth of jack pine (Pinus banksiana Lamb.). Can. Jour. Bot.40: 273–280.CrossRefGoogle Scholar
  363. — 1963. The suppression of growth rings in jack pine in relation to defoliation by the Swaine jack pine sawfly. Can. Jour. Bot.41: 227–235.CrossRefGoogle Scholar
  364. Ordin, L. 1958. The effect of water stress on the cell metabolism of plant tissue. Radioisotopes in Sci. Res.4: 553–564.Google Scholar
  365. — 1960. Effect of water stress on cell wall metabolism ofAvena coleoptile tissue. Plant Physiol.35: 443–450.PubMedCrossRefGoogle Scholar
  366. Oskretkov, M. Ya. 1957. The rate of photosynthesis in pine needles. Vsesoyuz. Konf. po Fotosintezu. Prob. Photosynthesis. Rep. 2nd Conf. V2 915–920. 1957. 45/ V965 Ae. (Transl. from Problemy Fotosinteza. Doklady.)Google Scholar
  367. Overholser, E. L., andF. L. Overley. 1934. The effect of spraying apple leaves with certain less used materials upon their carbon dioxide uptake. Proc. Amer. Soc. Hort. Sci.32: 93–96.Google Scholar
  368. Ovington, J. D. 1956. The form, weights and productivity of tree species grown in close stands. New Phytol.55: 289–304.CrossRefGoogle Scholar
  369. — 1957. Dry matter production byPinus silvestris L. Ann. Bot.21: 287–314.Google Scholar
  370. — 1961a. Some aspects of energy flow in plantations ofPinus sylvestris L. Ann. Bot.25: 12–20.Google Scholar
  371. -. 1961b. The productivity of some British woodlands. Recent Adv. in Bot., pp. 48–51.Google Scholar
  372. — 1963. Flower and seed production. A source of error in estimating woodland production, energy flow and mineral cycling. Oikos14: 148–153.CrossRefGoogle Scholar
  373. — 1965. Organic production, turnover, and mineral cycling in woodlands. Biol. Rev.40: 295–336.CrossRefGoogle Scholar
  374. —, andD. Heitkamp. 1960. The accumulation of energy in forest plantations in Britain. Jour. Ecol.48: 639–646.CrossRefGoogle Scholar
  375. —, andG. Murray. 1964. Determination of acorn fall. Quart. Jour. Forestry58: 152–159.Google Scholar
  376. —, andW. H. Pearsall. 1956. Production ecology II. Estimates of average production by trees. Oikos7: 202–205.CrossRefGoogle Scholar
  377. Parker, J. 1953. Photosynthesis ofPicea excelsa in winter. Ecology34: 605–609.CrossRefGoogle Scholar
  378. — 1959a. Seasonal changes in white pine leaves: a comparison of cold resistance and free sugar fluctuations. Bot. Gaz.121: 46–50.CrossRefGoogle Scholar
  379. — 1959b. Seasonal variations in sugars of conifers with some observations on cold resistance. Forest Sci.5: 56–63.Google Scholar
  380. — 1961. Seasonal trends in CO2 absorption, cold resistance, and transpiration of some evergreens. Ecology42: 372–380.CrossRefGoogle Scholar
  381. — 1962a. Seasonal changes in cold resistance and free sugars of some hardwood tree barks. Forest Sci.8: 255–262.Google Scholar
  382. — 1962b. Relationships among cold hardiness, water-soluble protein, anthocyanins, and free sugars inHedera helix L. Plant Physiol.37: 809–813.PubMedCrossRefGoogle Scholar
  383. Pearson, L. C., andD. B. Lawrence. 1957. Photosynthesis in aspen bark during winter months. Proc. Minnesota Acad. Sci.25: 101–107.Google Scholar
  384. ——. 1958. Photosynthesis in aspen bark. Amer. Jour. Bot.45: 383–387.CrossRefGoogle Scholar
  385. Pessin, L. J. 1934. Annual ring formation inPinus palustris seedlings. Amer. Jour. Bot.21: 599–604.CrossRefGoogle Scholar
  386. Pharis, R. P., andF. W. Woods. 1960. Effects of temperature upon photosynthesis and respiration of Choctawhatchee sand pine. Ecology41: 797–799.CrossRefGoogle Scholar
  387. Pickett, W. F. 1935. Photosynthetic activity and internal structure of apple leaves are correlated. Proc. Amer. Soc. Hort. Sci.32: 81–85.Google Scholar
  388. —, andC. J. Birkeland. 1942. Further studies on the effect of common spray materials on the internal structure of apple leaves. Proc. Amer. Soc. Hort. Sci.42: 69–70.Google Scholar
  389. —,A. S. Fish, Jr., andK. S. Shan. 1951. The influence of certain organic spray materials on the photosynthetic activity of peach and apple foliage. Proc. Amer. Soc. Hort. Sci.57: 111–114.Google Scholar
  390. Pieniazek, S. A., andE. Christopher. 1944. The effect of some new spray materials on the rate of apparent photosynthesis of apple leaves. Proc. Amer. Soc. Hort. Sci.44: 105–106.Google Scholar
  391. Pirson, A. 1958. Mineralstoffe und Photosynthese. Encycl. Plant Physiol.4: 355–381.Google Scholar
  392. Pisek, A. 1960. The nature of the temperature optimum and minimum of photosynthesis. Bull. Res. Counc. Israel8: 285–289.Google Scholar
  393. —, undG. Rehner. 1958. Temperaturminima der Netto-Assimilation von mediterranen und nordischalpinen Immergrünen. Ber. Deut. Bot. Ges.71: 188–193.Google Scholar
  394. —, undW. Tranquillini. 1954. Assimilation und Kohlenstoffhaushalt in der Krone von Fichten-(Picea excelsa Link) und Rotbuchenbäumen (Fagus silvatica L.). Flora141: 237–270.Google Scholar
  395. —, undE. Winkler. 1958. Assimilationsvermögen und Respiration der Fichte (Picea excelsa) in verschiedener Höhenlage und der Zirbe (Pinus cembra L.) an der alpinen Waldgrenze. Planta51: 518–543.CrossRefGoogle Scholar
  396. ——. 1959. Licht- und Temperaturabhängigkeit der CO2-Assimilation von Fichte (Picea excelsa Link), Zirbe (Pinus cembra L.) und Sonnenblume (Helianthus annum L.). Planta53: 532–550.CrossRefGoogle Scholar
  397. Polster, H. 1950. Die physiologischen Grundlagen der Stofferzeugung im Walde. Bayerischer Landwirtschaftsverlag (Munich).Google Scholar
  398. - 1951. Die Holzproduktion unserer einheimischer Laub- und Nadelbäume in Abhängigkeit von den klimatischen Bedingungen. Forstwirtschaft-Holzwirtschaft5: Heft 8.Google Scholar
  399. — 1955. Vergleichende Untersuchungen über die Kohlendioxydassimilation und Atmung der Douglasie, Fichte und Weymouthskiefer. Arch. Forstwes.4: 689–714.Google Scholar
  400. -. 1957. Measurement of photosynthesis with the URAS infrared gas analyser and several examples of its application in research on woody plants. Vsesoyuz. Konf. po Fotosintezu Prob. Photosynthesis. Rep. 2nd Conf. V2: 632–638. 45/ V965. Ae (Transl. from Problemy Fotosinteza. Doklady.)Google Scholar
  401. —, undS. Fuchs. 1960. Der Einfluss intermittierender Belichtung auf die Transpiration und Assimilation von Fichte und Lärche bei Dürrebelastung. Biol. Zentralbl.79: 465–480.Google Scholar
  402. ——. 1963. Winterassimilation und -atmung der Kiefer (Pinus silvestris L.) im mitteldeutschen Binnenklima. Arch. Forstwes.12: 1011–1023.Google Scholar
  403. —, undG. Neuwirth. 1958. Assimilationsökologische Studien an einem fünfjährigen Pappelbestand. Arch. Forstwes.7: 749–785.Google Scholar
  404. Polster, H., undG. Weise. 1962. Vergleichende Assimilationsuntersuchungen an Klonen verschiedener Lärchenherkünfte (Larix decidua undL. leptolepis) unter Frieland- und Klimaraumbedingungen. Züchter32: 103–110.CrossRefGoogle Scholar
  405. ——, undG. Neuwirth. 1960. Oekologische Untersuchungen über den CO2-Stoffwechsel und Wasserhaushalt einiger Holzarten auf ungarischen Sand- und Alkali-(“Szik”-) Böden. Arch. Forstwes.9: 947–1014.Google Scholar
  406. Preston, J. F., andF. J. Phillips. 1911. Seasonal variation in the food reserves of trees. Forestry Quarterly9: 232–243.Google Scholar
  407. Price, W. A. 1915. Starch in apple trees. Ohio Jour. Sci.16: No. 8.Google Scholar
  408. Priestley, C. A. 1960. Seasonal changes in the carbohydrate resources of some sixyear-old apple trees. Ann. Rep. East Mailing Res. Sta. for 1959, pp. 70–77.Google Scholar
  409. -. 1962a. Carbohydrate resources within the perennial plant. Comm. Bur. Hort. and Plantation Crops, Tech. Comm. 27.Google Scholar
  410. -. 1962b. The location of carbohydrate resources within the apple tree. Proc. XVI Int. Hort. Congr., pp. 319–327.Google Scholar
  411. -. 1964. The importance of autumn foliage to carbohydrate status and root growth of apple trees. Ann. Rep. East Mailing Res. Sta. for 1963, pp. 104–106.Google Scholar
  412. Printz, H. 1933. Granens og furuens fysiologi og geografiske utbredelse. Nyt Mag. Naturvidensk. 73.Google Scholar
  413. Quinlan, J. D. 1964. The pattern of distribution of 14-carbon in a potted apple rootstock following assimilation of 14-carbon dioxide by a single leaf. Ann. Rep. East Mailing Res. Sta. for 1963, pp. 117–118.Google Scholar
  414. Rabinowitch, E. I. 1945. Photosynthesis and related processes. I. Chemistry of photosynthesis, chemosynthesis and related processes in vitro and in vivo. Interscience Publishers, New York.Google Scholar
  415. Rediske, J. H., andK. R. Shea. 1961. The production and translocation of photosynthate in dwarf mistletoe and lodgepole pine. Amer. Jour. Bot.48: 447–452.CrossRefGoogle Scholar
  416. Reed, H. S., andD. T. MacDougal. 1937. Periodicity in the growth of the young orange tree. Growth1: 371–373.Google Scholar
  417. Reed, J. F. 1939. Root and shoot growth of shortleaf and loblolly pines in relation to certain environmental conditions. Duke Univ. School of Forestry Bull. 4.Google Scholar
  418. Rees, A. R. 1963. An analysis of growth of oil palm seedlings in full daylight and in shade. Ann. Bot.27: 325–337.Google Scholar
  419. —, andP. B. H. Tinker. 1963. Dry matter production and nutrient content of plantation oil palms in Nigeria I. Growth and dry matter production. Plant and Soil19: 19–32.CrossRefGoogle Scholar
  420. Reinken, G. 1963. Wachstum, Assimilation und Transpiration von Apfelbäumen und ihre Beeinflussung durch Phosphor. Phosphorsäure23: 91–108.Google Scholar
  421. Reukema, D. 1959. Missing annual rings in branches of young Douglas-fir. Ecology40: 480–482.CrossRefGoogle Scholar
  422. Reuther, W., andF. W. Burrows. 1942. The effect of manganese sulfate on the photosynthetic activity of frenched tung foliage. Proc. Amer. Soc. Hort. Sci.40: 73–76.Google Scholar
  423. Rhoads, W. A., andR. T. Wedding. 1953. The photosynthetic and respiratory rates of citrus leaves of four different ages. Citrus Leaves33: 10–11.Google Scholar
  424. Richardson, S. D. 1953. Studies of root growth inAcer saccharinum L. I. The relation between root growth and photosynthesis. Proc. Kon. Ned. Akad. Wetensch. Amsterdam C56: 185–193.Google Scholar
  425. — 1956a. Studies of root growth inAcer saccharinum L. III. The influence of seedling age on the short-term relation between photosynthesis and root growth. Proc. Kon. Ned. Akad. Wetensch. Amsterdam C59: 416–427.Google Scholar
  426. — 1956b. Studies of root growth inAcer saccharinum V. The effect of a long-term limitation of photosynthesis on root growth role in first-year seedlings. Proc. Kon. Ned. Akad. Wetensch. Amsterdam C59: 694–701.Google Scholar
  427. — 1956c. On the role of the acorn in root growth of American oak seedlings. Medd. Landbouwhogeschool Wageningen56: 1–18.Google Scholar
  428. — 1957. Studies of root growth inAcer saccharinum L. VI. Further effects of the shoot system on root growth. Proc. Kon. Ned. Akad. Wetensch. Amsterdam C60: 624–629.Google Scholar
  429. — 1958. Bud dormancy and root development inAcer saccharinum.In: The physiology of forest trees, Ed. by K. V. Thimann, Ronald Press, New York, Chapter 20.Google Scholar
  430. — 1960. The role of physiology in forest tree improvement. Proc. Fifth World Forestry Congress2: 733–741.Google Scholar
  431. Riedhart, J. M. 1961. Influence of petroleum oil on photosynthesis of banana leaves. Trop. Agr.38: 23–27.Google Scholar
  432. — 1964. Influence of hydrocarbons and oil on photosynthesis in the orchid tree. Proc. Amer. Soc. Hort. Sci.85: 265–269.Google Scholar
  433. — 1965. Influence of hexadecane on absorption of carbon dioxide by plants. Nature208: 300–301.CrossRefGoogle Scholar
  434. Riehl, L. A. 1959. Influence of water phase of oil spray on photosynthesis in Eureka lemon and Bearss lime leaves. Jour. Econ. Ent.52: 174–175.Google Scholar
  435. —,J. P. LaDue, andJ. L. Rodriguez, Jr. 1959. Efficiency of ethion in oil spray against California red scale and citrus red mite. Jour. Econ. Ent.52: 857–860.Google Scholar
  436. —, andR. T. Wedding. 1959a. Effects of naphthenic and paraffinic petroleum composition at a comparable molecular weight or viscosity on photosynthesis of Eureka lemon leaves. Jour. Econ. Ent.52: 883–884.Google Scholar
  437. ——. 1959b. Relation of oil type, deposit, and soaking to effects of spray oils on photosynthesis in citrus leaves. Jour. Econ. Ent.52: 88–94.Google Scholar
  438. Ritter, C. M. 1958. The nitrogenous carbohydrate, and mineral element composition of Stayman Winesap and Delicious apple trees growing in different management systems. Diss. Abstr.18: 747–751.Google Scholar
  439. Roberts, B. R. 1964. Effects of water stress on the translocation of photosynthetically assimilated carbon-14 in yellow poplar.In: The formation of wood in forest trees, Ed. by M. H. Zimmermann, Academic Press, New York, pp. 273–288.Google Scholar
  440. Roberts, R. H. 1920. Off-year apple bearing and apple spur growth. Wisconsin Agr. Exp. Sta. Bull. 317.Google Scholar
  441. Rodrigues, J., andG. F. Ryan. 1960. The influence of season and temperature on carbohydrates in avocado shoots. Proc. Amer. Soc. Hort. Sci.76: 253–261.Google Scholar
  442. Rogers, W. S. 1939. Root studies. VIII. Apple root growth in relation to rootstock, soil, seasonal and climatic factors. Jour. Pom. Hort. Sci.17: 99–130.Google Scholar
  443. —, andG. A. Booth. 1964. Relationship of crop and shoot growth in apple. Jour. Hort. Sci.39: 61–65.Google Scholar
  444. Rommell, L. 1937. Kuistrensning och övervallning hos okvistad och torrkvistad tall. Svenska Skogsvardsföreningens Tidskr.35: 299–328.Google Scholar
  445. — 1940-41. Kuistningsstudier å tall och gran. Meddel. Fran Statens Skogsförsöksanstalt32: 143–194.Google Scholar
  446. Roscina, V. D. 1962. Distribution and conversion of carbohydrate reserves in the wood ofQuercus robur andRobinia pseudoacacia. Forestry Abstr.23, No. 3147.Google Scholar
  447. Routien, V. B., andR. F. Dawson. 1943. Some interrelationships of growth, salt absorption, respiration and mycorrhizal development inPinus echinata Mill. Amer. Jour. Bot.30: 440–451.CrossRefGoogle Scholar
  448. Ruck, H. C., andD. Bolas. 1956. Studies in the comparative physiology of apple root stocks I. The effects of nitrogen on the growth and assimilation of Mailing root stocks. Ann. Bot.20: 57–68.Google Scholar
  449. Rüsch, J. 1959. Das Verhältnis von Transpiration und Assimilation als physiologische Kenngrösse, untersucht an Pappelklonen. Züchter29: 348–354.CrossRefGoogle Scholar
  450. Rutter, A. J. 1957. Studies in the growth of young plants ofPinus sylvestris L. I. The annual cycle of assimilation and growth. Ann. Bot.21: 399–425.Google Scholar
  451. Ryugo, K., andL. D. Davis. 1959a. The comparison between the net assimilation rate of peach leaves and the rate of accumulation of dry weight by the crop. Proc. Amer. Soc. Hort. Sci.74: 134–143.Google Scholar
  452. ——. 1959b. The effect of the time of ripening on the starch content of bearing peach branches. Proc. Amer. Soc. Hort. Sci.74: 130–133.Google Scholar
  453. Sablon, L. du. 1904. Recherches physiologiques sur les matières de réserves des arbres. Rev. Gén. Bot.16: 341–368, 386–401.Google Scholar
  454. Sacher, J. A. 1954. Structure and seasonal activity of the shoot apices ofPinus lambertiana andPinus ponderosa. Amer. Jour. Bot.41: 749–759.CrossRefGoogle Scholar
  455. Saeki, T., andN. Nomoto. 1958. On the seasonal change of photosynthetic activity of some deciduous and evergreen broadleaf trees. Bot. Mag. Tokyo71: 841–842.Google Scholar
  456. Sasaki, S., andT. T. Kozlowski. 1965. Effect of herbicides on photosynthesis of red pine seedlings. Univ. Wisconsin Forestry Research Note 118.Google Scholar
  457. ——. 1966a. Variable photosynthetic responses ofPinus resinosa seedlings to herbicides. Nature209: 1042–1044.Google Scholar
  458. ——. 1966b. Influence of herbicides on respiration of youngPinus seedlings. Nature210: 439–440.CrossRefGoogle Scholar
  459. Satoo, T., andK. Negisi. 1961. Experiments on the effect of soil moisture on photosynthesis on conifer seedlings. Recent Adv. in Bot. (Toronto), pp. 1317–1321.Google Scholar
  460. —, andT. Takegosi. 1952. Seasonal change of starch content inQuercus myrsinaefolia andQ. acutissima. Tokyo Univ. Forests Misc. Inf.9: 17–23.Google Scholar
  461. Saunier, R. E., andR. F. Wagle. 1965. Root grafting inQuercus turbinella Green. Ecology46: 749–750.CrossRefGoogle Scholar
  462. Schimper, A. F. W. 1903. Plant-geography upon a physiological basis (English translation). Clarendon Press, Oxford.Google Scholar
  463. Schmidt, W. 1961. Eignungstests mitteleuropäischer Fichtenherkünfte für Schweden. Forstpflz.-Forstsamen Heft 3/4: 17–22.Google Scholar
  464. Schneider, G. W., andN. F. Childers. 1941. Influence of soil moisture on photosynthesis, respiration and transpiration of apple leaves. Plant Physiol.16: 565–583.PubMedCrossRefGoogle Scholar
  465. Scholander, P. F., L. van Dam, andS. I. Scholander. 1955. Gas exchange in the roots of mangroves. Amer. Jour. Bot.42: 92–98.CrossRefGoogle Scholar
  466. Schönborn, A. von. 1964. Die Atmung der Samen. Diss. Univ. München.Google Scholar
  467. Schröder, H. 1919. Die jährliche Gesamtproduktion der grünen Pflanzendecke der Erde. Naturwissenschaften7: 8–29.CrossRefGoogle Scholar
  468. Schroeder, R. A. 1936. The effect of some summer oil sprays upon the CO2 absorption of apple leaves. Proc. Amer. Soc. Hort. Sci.33: 170–172.Google Scholar
  469. Sell, H. M., andF. A. Johnston. 1949. Biochemical changes in terminal tung buds during their expansion prior to blossoming. Plant Physiol.24: 744–752.PubMedCrossRefGoogle Scholar
  470. Sharples, G. C., andL. Burkhart. 1954. Seasonal changes in carbohydrates in the Marsh grapefruit tree in Arizona. Proc. Amer. Soc. Hort. Sci.63: 74–80.Google Scholar
  471. Shiroya, T., G. R. Lister, V. Slankis, G. Krotkov, andC. D. Nelson. 1966. Seasonal changes in respiration, photosynthesis, and translocation of the14C labelled products of photosynthesis in youngPinus strobus L. plants. Ann. Bot.30: 81–91.Google Scholar
  472. —,V. Slankis, G. Krotkov, andC. D. Nelson. 1962. The nature of photosynthate inPinus strobus seedlings. Can. Jour. Bot.40: 669–676.CrossRefGoogle Scholar
  473. Shiue, C. J., andH. L. Hansen. 1958. Some anatomical responses of conifer needles to 3-amino-l, 2, 4-triazole. Hormolog 2, No. 1.Google Scholar
  474. Siminovitch, D., C. M. Wilson, andD. R. Briggs. 1953. Studies on the chemistry of the living bark of the black locust in relation to frost hardiness. V. Seasonal transformations and variations in the carbohydrates: starch-sucrose interconversions. Plant Physiol.28: 383–400.PubMedCrossRefGoogle Scholar
  475. Smyth, E. M. 1934. The seasonal cycles of nitrogenous and carbohydrate materials in fruit trees. Jour. Pom. and Hort. Sci.12: 249–292.Google Scholar
  476. Sorensen, F. C. 1965. Photosynthesis, respiration, and dry matter accumulation of Douglas-fir seedlings from different geographic sources and grown at different temperatures. Ph.D. Thesis, Oregon State Univ., Corvallis, Oregon.Google Scholar
  477. Southwick, F. W., andN. F. Childers. 1939. The influence of Bordeaux mixture on the rate of photosynthesis and transpiration of apple leaves. Proc. Amer. Soc. Hort. Sci.37: 374.Google Scholar
  478. ——. 1941. Influence of Bordeaux mixture and its component parts on transpiration and apparent photosynthesis of apple leaves. Plant. Physiol.16: 721–754.PubMedCrossRefGoogle Scholar
  479. Stålfelt, M. G. 1921. Zur Kenntnis der Kohlenhydratproduktion von Sonnen- und Schattenblättern. Meddel. Statens Skogsförsöksanstalt (Stockholm)18: 276–280.Google Scholar
  480. — 1924. Untersuchungen zur Oekologie der Kohlensäureassimilation der Nadelbäume. Meddel. Statens Skogsförsöksanstalt (Stockholm)24: 249–258.Google Scholar
  481. — 1935. Die Spaltöffnungsweite als Assimilationsfaktor. Planta23: 715–759.CrossRefGoogle Scholar
  482. — 1939. Licht- und Temperaturhemmung in der Kohlensäureassimilation. Planta30: 384–421.CrossRefGoogle Scholar
  483. — 1960. Die Abhängigkeit (der Photosynthese) von zeitlichen Faktoren. Encycl. Plant Physiol.5: 226–254.Google Scholar
  484. — 1963. On the distribution of the precipitation in a spruce stand.In: The water relations of plants. Ed by A. J. Rutter and F. H. Whitehead, Blackwell Sci. Publications, London, pp. 116–126.Google Scholar
  485. Steinhübel, G. 1963. Zur Frage der Resistenz immergrüner Laubgehölze gegen schädliche Einwirkungen von festen Rauchemissionen. Acta Bot. Acad. Sci. Hungaricae9: 433–445.Google Scholar
  486. Stiles, W. C. 1958. Effects of growth regulating chemicals on apparent photosynthesis of apple leaves. Diss. Abstr.19: 1155–1156.Google Scholar
  487. -, andC. M. Ritter. 1960. Photosynthetic and growth responses of apple trees to growth regulating chemicals. Pennsylvania Agr. Exp. Sta. Bull. 673.Google Scholar
  488. Strain, B. R., andP. L. Johnson. 1963. Corticular photosynthesis and growth inPopulus tremuloides. Ecology44: 581–584.CrossRefGoogle Scholar
  489. Studhalter, R. A., W. S. Glock, andSharlene R. Agerter. 1963. Tree growth. Bot. Rev.29: 245–365.CrossRefGoogle Scholar
  490. Swanson, C. A., andE. D. El. Shishiny. 1958. Translocation of sugars in the Concord grape. Plant Physiol.33: 33–37.PubMedCrossRefGoogle Scholar
  491. Swarbrick, T. 1927. Studies in the physiology of fruit trees. I. The seasonal starch content and cambial activity in oneto five-year-old apple branches. Jour. Pom. and Hort. Sci.6: 137–156.Google Scholar
  492. Taylor, F. H. 1956. Variation in sugar content of maple sap. Vermont Agr. Exp. Sta. Bull. 587.Google Scholar
  493. Thom, L. A. 1951. A study of the respiration of hardy pear buds in relation to rest period. Ph.D. dissertation, Univ. California, Berkeley.Google Scholar
  494. Thomas, M. D. 1955. Effect of ecological factors on photosynthesis. Ann. Rev. Plant Physiol.6: 135–156.CrossRefGoogle Scholar
  495. Tingley, M. A. 1936. Double growth rings in Red Astrachan. Proc. Amer. Soc. Hort. Sci.34: 61.Google Scholar
  496. Titman, P. W., andR. H. Wetmore. 1955. The growth of long and short shoots inCercidiphyllum. Amer. Jour. Bot.42: 364–372.CrossRefGoogle Scholar
  497. Todd, G. W., R. C. Bean, andB. Propst. 1961. Photosynthesis and respiration in developing fruits. II. Comparative rates at various stages of development. Plant Physiol.36: 69–73.PubMedCrossRefGoogle Scholar
  498. Tompkins, L. E. 1934. The effects of certain fertilizers upon the CO2 intake of mature Jonathan apple leaves. Proc. Amer. Soc. Hort. Sci.32: 97–100.Google Scholar
  499. Tranquillini, W. 1952. Der Ultrarotabsorptionsschreiber im Dienste ökologischer Messungen des pflanzlichen CO2-Umsatzes. Ber. Deut. Bot. Ges.65: 102–112.Google Scholar
  500. — 1954a. Die Lichtabhängigkeit der Assimilation von Sonnen und Schattenblättern einer Buche unter ökologischen Bedingungen. Proc. 8th Int. Bot. Congr., sec.13, pp. 100–102.Google Scholar
  501. — 1954b. Über den Einfluss von Übertemperaturen der Blätter bei Dauereinschluss in Küvetten auf die ökologische CO2-Assimilationsmessung. Ber. Deut. Bot. Ges.67: 191–204.Google Scholar
  502. — 1955. Die Bedeutung des Lichtes und der Temperatur für die Kohlensäureassimilation vonPinus cembra-Jungwuchs an einem hochalpinen Standort. Planta46: 154–178.CrossRefGoogle Scholar
  503. — 1957. Standortsklima, Wasserbilanz und CO2-Gaswechsel junger Zirben (Pinus cembra L.) an der alpinen Waldgrenze. Planta49: 612–661.CrossRefGoogle Scholar
  504. — 1959a. Die Stoffproduktion der Zirbe (Pinus cembra L.) an der Waldgrenze während eines Jahres. I. Standortsklima und CO2-Assimilation. Planta54: 107–129.CrossRefGoogle Scholar
  505. — 1959b. Die Stoffproduktion der Zirbe (Pinus cembra L.) an der Waldgrenze während eines Jahres. II. Zuwachs und CO2-Bilanz. Planta54: 130–151.CrossRefGoogle Scholar
  506. — 1962a. Beitrag zur Kausalanalyse des Wettbewerbs ökologisch verschiedener Holzarten. Ber. Deut. Bot. Ges.75: 353–364.Google Scholar
  507. -. 1962b. Zur Bestimmung der Stoffproduktion aus CO2-Gaswechselanalysen.In: Die Stoffproduktion der Pflanzendecke, Ed. by H. Lieth, G. Fischer, Stuttgart, pp. 47–53.Google Scholar
  508. — 1963. Die Abhängigkeit der Kohlensäureassimilation junger Lärchen, Fichten und Zirben von der Luft- und Bodenfeuchte. Planta60: 70–94.CrossRefGoogle Scholar
  509. — 1964a. Photosynthesis and dry matter production of trees at high altitudes.In: The formation of wood in forest trees, Ed. by M. H. Zimmermann, Academic Press, New York, pp. 505–518.Google Scholar
  510. — 1964b. The physiology of plants at high altitudes. Ann. Rev. Plant Physiol.15: 345–362.CrossRefGoogle Scholar
  511. —, undK. Holzer. 1958. Ueber das Gefrieren und Tauen von Coniferennadeln. Ber. Deut. Bot. Ges.71: 143–156.Google Scholar
  512. Traub, H. P. 1927. Regional and seasonal distribution of moisture, carbohydrates, nitrogen, and ash in 2–3 year portions of apple twigs. Minn. Agr. Exp. Sta. Tech. Bull. 53.Google Scholar
  513. Trip, P., G. Krotkov, andC. D. Nelson. 1963. Biosynthesis of mannitol-C14 from C14O2 by detached leaves of white ash and lilac. Can. Jour. Bot.41: 1005–1010.CrossRefGoogle Scholar
  514. —,C. D. Nelson, andG. Krotkov. 1965. Selective and preferential translocation of C14-labeled sugars in white ash and lilac. Plant Physiol40: 740–747.PubMedCrossRefGoogle Scholar
  515. Tukey, L. D. 1956. Some effects of night temperature on the growth of McIntosh apples. Proc. Amer. Soc. Hort. Sci.68: 32–43.Google Scholar
  516. Uhl, A. 1937. Untersuchungen über die Assimilationsverhältnisse und die Ursachen ihrer Unterschiede in der GattungPinus. Jahrb. Wiss. Bot.85: 368–421.Google Scholar
  517. Van der Meer, Q. P., andE. C. Wassink. 1962. Preliminary note on photosynthesis in green plum fruits. Medd. Landbouwhogeschool Wageningen62: 1–9.Google Scholar
  518. Van Overbeek, J., andR. Blondeau. 1954. Mode of action of phytotoxic oils. Weeds3: 55–65.CrossRefGoogle Scholar
  519. Vasileva, Z. V. 1956. The photosynthesis of certain varieties of vine under conditions of the Moscow region. Biul. Glav. Bot. Sad Moscow24: 51–58.Google Scholar
  520. Vinokur, R. L. 1957. Influence of temperature of the root environment on root activity, transpiration and photosynthesis of leaves of lemon. Fiziol. Rastenii4: 268–273.Google Scholar
  521. Vins, B. 1962. Die Auswertung jahrringschronologischer Untersuchungen in rauchgeschädigten Fichtenwäldern des Erzgebirges. Wiss. Zeitschr. Techn. Univ. Dresden11: 579–580.Google Scholar
  522. Vogl, M. 1964. Physiologische und biochemische Beiträge zur Rauchschadenforschung. II. Vergleichende quantitative Messungen der SO2- und CO2-Absorption von Kiefernnadeln bei künstlicher Schwefeldioxydbegasung. Biol. Zentralbl.83: 587–594.Google Scholar
  523. —,S. Börtitz, undH. Polster. 1964. Physiologische und biochemische Beiträge zur Rauchschadenforschung. III. Der Einfluss stossartiger, starker SO2 Begasung auf die CO2-Absorption und einige Nadelinhaltstoffe von Fichte (Picea Abies) und Bergkiefer (Pinus mugo Turra) unter Laboratoriumsbedingungen. Arch. Forstwes.13: 1031–1043.Google Scholar
  524. Voigt, G. K. 1953. The effects of fungicides, insecticides, herbicides and fertilizer salts on the respiration of root tips of tree seedlings. Proc. Soil Sci. Soc. Amer.17: 150–152.CrossRefGoogle Scholar
  525. Walker, R. B., K. Fry, J. Helms, W. G. Gentle, andD. R. M. Scott. 1963. Measurements of photosynthesis in Douglas-fir (Pseudotsuga menziesii). Plant Physiol. Suppl.38: xxxvi.Google Scholar
  526. Walters, J., andJ. Soos. 1963. Shoot growth patterns of some British Columbia conifers. Forest Sci.9: 73–85.Google Scholar
  527. Wanner, H. 1953. Die Zusammensetzung des Siebröhrensaftes. Kohlenhydrat. Ber. Schweiz. Bot. Ges.63: 162–168.Google Scholar
  528. Wardrop, A. B. 1957. Phase of lignification in the differentiation of wood fibers. Tappi40: 225–243.Google Scholar
  529. —, andD. E. Bland. 1958. The process of lignification in woody plants. Proc. 4th Int. Congr. Biochem.2: 92–116.Google Scholar
  530. Wareing, P. F. 1951. Growth studies in woody species. IV. The initiation of cambial activity in ring-porous species. Physiol. Plantarum4: 546–562.CrossRefGoogle Scholar
  531. — 1964. Tree physiology in relation to genetics and breeding. Unasylva18: 73–74.Google Scholar
  532. —,C. E. A. Hanney, andJ. Digby. 1964. The roles of endogenous hormones in cambial activity and xylem differentiation.In: The formation of wood in forest trees, Ed. by M. H. Zimmermann, Academic Press, New Yrok, pp. 323–344.Google Scholar
  533. Wassink, E. C. 1959a. Efficiency of light energy conversion in plant growth. Plant Physiol.34: 356–361.PubMedCrossRefGoogle Scholar
  534. — 1959b. Efficiency of solar energy conversion in field crops. Proc. IX Int. Bot. Congr.2: 424–425.Google Scholar
  535. —, andS. D. Richardson. 1951. Observations on the connection between root growth and shoot illumination in first-year seedlings ofAcer pseudo platanus L. andQuercus borealis maxima (Marsh) Ashe. Proc. Kon. Ned. Akad. Wetensch. Amsterdam C54: 503–510.Google Scholar
  536. Waugh, J. G. 1939. Some investigations on the assimilation of apple leaves. Plant Physiol.14: 463–477.PubMedCrossRefGoogle Scholar
  537. Weatherley, P. E., A. J. Peel, andG. P. Hill. 1959. The physiology of the sieve tube. Jour. Exp. Bot.10: 1–16.CrossRefGoogle Scholar
  538. Wedding, R. T., L. C. Erickson, andB. L. Brannaman. 1954. Effect of 2, 4-Dichlorophenoxyacetic acid on photosynthesis and respiration. Plant Physiol.29: 64–69.PubMedCrossRefGoogle Scholar
  539. —,L. A. Riehl, andW. A. Rhoads. 1952. Effect of petroleum oil spray on photosynthesis and respiration in citrus leaves. Plant Physiol.27: 269–278.PubMedCrossRefGoogle Scholar
  540. Weide, H. 1962. Untersuchungen zur Assimilation, Atmung und Transpiration vonSequoia glyptostroboides (Hu et Cheng) Weide. Arch. Forstwes.11: 1209–1229.Google Scholar
  541. Weinberger, J. H., andF. P. Cullinan. 1932. Further studies on the relation between leaf area and size of fruit, chemical composition and fruit bud formation in Elberta peaches. Proc. Amer. Soc. Hort. Sci.29: 23–27.Google Scholar
  542. Weise, G. 1961a. Gasstoffwechselphysiologische Untersuchungen zum Frosttrockniseffekt der Fichte (Picea abies (L.) Karst.). Ber. Deut. Bot. Ges.74: 405–417.Google Scholar
  543. — 1961b. Untersuchungen über den Einfluss von Kältebelastungen auf die physiologische Tätigkeit von Forstgewächsen. I. CO2-Stoffwechsel und Transpiration der Fichte (Picea abies (L.) Karst.). Biol. Zentralbl.80: 137–166.Google Scholar
  544. — 1962. Untersuchungen über die Gaswechselphysiologie von Holzarten im Wärmeaufenthalt nach Frost. Wiss. Zeitschr. Techn. Univ. Dresden11: 1261–1268.Google Scholar
  545. —, undS. Börtitz. 1964. Biochemische und gasstoffwechselphysiologische Untersuchungen an Fichte (Picea abies (L.) Karst.) und Omorikafichte (Picea omorica Pancic) nach Dürrebelastungen unter standardisierten Bedingungen. Biol. Zentralbl.83: 19–25.Google Scholar
  546. —, undS. Fuchs. 1964. Die Sistierung der Nettoassimilation und ihre Beziehung zur Dürreresistenz. Biol. Zentralbl.83: 625–631.Google Scholar
  547. —, undH. Polster. 1962. Untersuchungen über den Einfluss von Kältebelastungen auf die physiologische Aktivität von Forstgewächsen. II. Stoffwechselphysiologische Untersuchungen zur Frage der Frostresistenz von Fichten und Douglasienherkünften (Picea abies (L.) Karst. undPseudotsuga taxifolia (Poir.) Britton). Biol. Zentralbl.81: 129–143.Google Scholar
  548. Wenger, K. F. 1953. The sprouting of sweetgum in relation to season of cutting and carbohydrate content. Plant Physiol.28: 35–49.PubMedCrossRefGoogle Scholar
  549. Went, F. W. 1958. The physiology of photosynthesis in higher plants. Preslia30: 225–249.Google Scholar
  550. Westing, A. H. 1959. Effect of gibberellin on conifers: generally negative. Jour. Forestry57: 120–122.Google Scholar
  551. — 1965. Formation and function of compression wood in gymnosperms. Bot. Rev.31: 381–480.CrossRefGoogle Scholar
  552. Whetter, J. M., andC. D. Taper. 1963. Note on seasonal occurrence of sorbitol (Dglucitol) in buds and leaves ofMalus. Can. Jour. Bot.41: 175–177.CrossRefGoogle Scholar
  553. White, D. G., andN. F. Childers. 1942. The effect of the ground water table on apparent photosynthesis, transpiration, and growth of Stayman Winesap apple trees during the growing season of 1941. Proc. Amer. Soc. Hort. Sci.42: 71–72.Google Scholar
  554. Wieler, A. 1903. Ueber unsichtbare Rauchschäden. Zeitschr. Forst-u. Jagdwes. (Berlin)35: 204–225.Google Scholar
  555. -. 1905. Untersuchungen über die Einwirkung schwefliger Säure auf die Pflanzen. Berlin, 415 pp.Google Scholar
  556. — 1916. Ueber Beziehungen zwischen der schwefligen Säure und der Assimilation. Ber. Deut. Bot. Ges.34: 508–525.Google Scholar
  557. — 1933. Ueber die Einwirkung von Säuren auf die Assimilation der Holzgewächse. Jahrb. Wiss. Bot.78: 483–543.Google Scholar
  558. Wight, W. 1933. Radial growth of the xylem and starch reserves ofPinus silvestris. New Phytol.32: 77–96.CrossRefGoogle Scholar
  559. Wilcox, H. 1954. Primary organization of active and dormant roots of noble fir,Abies procera. Amer. Jour. Bot.41: 812–821.CrossRefGoogle Scholar
  560. — 1962. Cambial growth characteristics.In: Tree Growth, Ed. by T. T. Kozlowski, Ronald Press, New York, Chapter 3.Google Scholar
  561. Winget, C. H., andT. T. Kozlowski. 1965a. Seasonal basal area growth as an expression of competition in northern hardwoods. Ecology46: 786–793.CrossRefGoogle Scholar
  562. ——. 1965b. Yellow birch germination and seedling growth. Forest Sci.11: 386–392.Google Scholar
  563. ——, andJ. E. Kuntz. 1963. Effects of herbicides on red pine nursery stock. Weeds11: 87–90.CrossRefGoogle Scholar
  564. Winkler, E. 1957. Klimaelemente für Innsbruck (582 m) und Patscherkofel (1909 m) im Zusammenhang mit der Assimilation von Fichten in verschiedenen Höhenlagen. Veröff. Mus. Ferdinandeum Innsbruck37: 19–48.Google Scholar
  565. Wislicenus, H. 1898. Resistenz der Fichte gegen saure Rauchgase bei ruhender und thätiger Assimilation. Tharandt. Forstl. Jahrb.48: 152–172.Google Scholar
  566. — 1914. Experimentelle Rauchschäden. Abhandl. über Abgase u. Rauchschäden10: 1–168. Parey, Berlin.Google Scholar
  567. Wold, M. L., andR. M. Lanner. 1965a. New stool shoots from a 20-year-old swampmahogany Eucalyptus stump. Ecology46: 755–756.CrossRefGoogle Scholar
  568. Woods, F. W., H. C. Harris, andR. E. Caldwell. 1959. Monthly variations of carbohydrates and nitrogen in roots of sandhill oaks in wire grass. Ecology40: 292–295.CrossRefGoogle Scholar
  569. Young, G. W. 1934. Fish oil sprays as affecting the CO2 intake by Jonathan apple leaves. Proc. Amer. Soc. Hort. Sci.32: 101–103.Google Scholar
  570. Yurina, E. V. 1957. Photosynthesis of woody plants under conditions of sufficient and insufficient moistures. Fiziol. Rastenii4: 60–71.Google Scholar
  571. Zacharova, T. M. 1929. Ueber den Gasstoffwechsel der Nadelholzpflanzen im Winter. Planta8: 68–83.CrossRefGoogle Scholar
  572. Zeller, O. 1951. Ueber Assimilation und Atmung der Pflanzen im Winter bei tiefen Temperaturen. Planta39: 500–526.CrossRefGoogle Scholar
  573. Ziegler, H. 1956. Untersuchungen über die Leitung und Sekretion der Assimilate. Planta47: 447–500.CrossRefGoogle Scholar
  574. — 1964. Storage, mobilization, and distribution of reserve material in trees.In: The formation of wood in forest trees, Ed. by M. H. Zimmermann, Academic Press, New York, pp. 303–320.Google Scholar
  575. Zimmermann, M. H. 1957a. Translocation of organic substances in trees. I. The nature of sugars in the sieve tube exudate of trees. Plant Physiol.32: 288–291.PubMedCrossRefGoogle Scholar
  576. — 1957b. Translocation of organic substances in trees. II. On the translocation mechanisms in the phloem of white ash (Fraxinus americana L.). Plant Physiol.32: 399–404.PubMedCrossRefGoogle Scholar
  577. — 1958. Translocation of organic substances in the phloem of trees.In: The physiology of forest trees, Ed. by K. V. Thimann, Ronald Press, New York, Chapter 18.Google Scholar
  578. — 1960. Absorption and translocation: transport in the phloem. Ann. Rev. Plant Physiol.11: 167–190.CrossRefGoogle Scholar
  579. — 1964. The relation of transport to growth in dicotyledonous trees.In: The formation of wood in forest trees, Ed. by M. H. Zimmermann, Academic Press, New York, pp. 289–301.Google Scholar

Copyright information

© The New York Botanical Garden 1966

Authors and Affiliations

  • Theodore T. Kozlowski
    • 1
  • Theodor Keller
    • 2
  1. 1.Department of ForestryUniversity of WisconsinMadison
  2. 2.Eidgenössische Anstalt für das forstliche VersuchswesenBirmensdorfSwitzerland

Personalised recommendations