The Botanical Review

, Volume 33, Issue 3, pp 189–215 | Cite as

Ecology of microfungi

  • Vasil T. Panasenko


Moisture Content Botanical Review Mycelial Growth Patulin Cotton Boll 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ames, A. 1915. The temperature relations of some fungi causing storage rots. Phytopathology5:11–19.Google Scholar
  2. Aragaki, M. 1964. Relation of radiation and temperature to the sporulation ofAlternaria tomato and other fungi. Phytopathology54:565–569.Google Scholar
  3. Armolik, N., andJ. D. Dickson. 1956. Minimum humidity requirement for germination of conidia of fungi associated with storage of grain. Phytopathology46:462–465.Google Scholar
  4. Barnett, H. L., andV. G. Lilly. 1950. Influence of nutritional and environmental factors upon asexual reproduction ofChoanephora cucurbitarum in culture. Phytopathology40:80–89.Google Scholar
  5. —. 1955. The effects of humidity, temperature and carbon dioxide on sporulation ofChoanephora cucurbitarum. Mycologia47:26–29.CrossRefGoogle Scholar
  6. Barton-Wright, E. C., andR. G. Tomkins. 1940. The moisture content and growth of mold in flour, bran, and middlings. Cereal Chem.17:332–342.Google Scholar
  7. Bary, A. de. 1884. Vergleichende Morphologie und Biologie der Pilze, Mycetozoen und Bakterien. Engelmann, Leipzig, xvi + 558 pp.Google Scholar
  8. Behrens, J. 1897. Untersuchungen über den Wurzelschimmel der Reben. Zentralbl. Bakteriol. II.3:639–645, 743–750.Google Scholar
  9. Berry, J. A., andC. A. Magoon. 1934. Growth of microorganisms at and below 0° C. Phytopathology24:780.Google Scholar
  10. Beyma, F. H. van. 1933. Beschreibungen einiger neuer Pilzarten aus dem Centraalbureau voor Schimmelcultures. Zentralbl. Bakteriol. II.88:132–141.Google Scholar
  11. Bisby, G. R., M. C. Jamieson, andM. Timonin. 1933. The fungi found in butter. Can. Jour. Res.9:97–107.Google Scholar
  12. Block, S. S. 1953. Humidity requirements for mold growth. Appl. Microbiol.1: 287–293.PubMedGoogle Scholar
  13. Bonner, J. 1948. A study of the temperature and humidity requirement ofAspergillus niger. Mycologia40:728–738.PubMedCrossRefGoogle Scholar
  14. Brian, P. W. 1957a. Antibiotics produced by fungi. Bot. Rev.17:357–430.Google Scholar
  15. -. 1957b. The ecological significance of antibiotic production.In: “Microbial Ecology,” ed. by R. E. O. Williams and C. C. Spicer, Cambridge Univ. Press, ix+ 388 pp. (pp. 168–188).Google Scholar
  16. —,G. W. Elson, andD. Love. 1956. Production of patulin in apple fruits byPenicillium. Nature178:263–264.CrossRefGoogle Scholar
  17. Brooks, F. T., andC. G. Hansford. 1923. Mold growth upon stored meat. Brit. Mycol Soc. Trans.8:113–142.Google Scholar
  18. Brown, G. E., andB. W. Kennedy. 1966. Effect of oxygen concentration onPythium seed rot of soybean. Phytopathology56:407–411.Google Scholar
  19. Browne, C. A. 1918. The deterioration of raw cane sugar: a problem in food conservation. Jour. Ind. & Eng. Chem.10:178–190.CrossRefGoogle Scholar
  20. Burges, A., andE. Fenton. 1953. The effect of CO2 on the growth of certain soil fungi. Brit. Mycol. Soc. Trans.36:104–108.CrossRefGoogle Scholar
  21. Byrde, R. J. W. 1965. The chemical environment of fungal growth.In: “The Fungi,” ed. byG. C. Ainsworth andA. S. Sussman, Academic Press, New York, pp. 525–541.Google Scholar
  22. Cantino, E. C., andE. A. Horenstein. 1956. The stimulatory effect of light upon growth and CO2 fixation byBlastodadiella. Mycologia48:777–799.CrossRefGoogle Scholar
  23. Carbone, L. J., andG. T. Johnson. 1964. Growth and pigmentation ofAspergillus umbrosus. Mycologia56:185–195.CrossRefGoogle Scholar
  24. Carter, E. P., andG. Y. Young. 1950. Role of fungi in the heating of moist wheat. U.S. Dep. Agr. Circ. 838, 26 pp.Google Scholar
  25. Chistjakoff, F. M., andZ. Z. Bocharova. 1938. Influence of low temperature on development of molds. Mikrobiologia7:498–513.Google Scholar
  26. Christensen, C. M. 1957. Deterioration of stored grain by fungi. Bot. Rev.23:108–134.Google Scholar
  27. —. 1961. The molds and man. Univ. Minn. Press, Minneapolis, 238 pp.Google Scholar
  28. —. 1962. Invasion of stored wheat byAspergillus ochraceus. Cereal Chem.39:100–106.Google Scholar
  29. —, andD. R. Gordon. 1948. The mold flora of stored wheat and corn and its relation to heating of moist grain. Cereal Chem.25:40–51.Google Scholar
  30. —, andL. C. Lopez. 1965. Relation of moisture content and length of storage to changes in the microflora and germination percentage of rough rice. Phytopathology55:953–956.Google Scholar
  31. —,G. C. Papavizas, andC. R. Benjamin. 1959. A new halophilic species ofEurotium. Mycologia51:636–640.CrossRefGoogle Scholar
  32. Clegg, L. F. L., andS. E. Jacobs. 1953. Environmental and other aspects in adaptations in thermophiles.In: “Adaptation in Micro-organisms,” ed. by R. Davies and E. F. Gale, Cambridge Univ. Press, ix + 399 pp. (pp. 306–325).Google Scholar
  33. Coleman, D. A., andH. C. Fellows. 1925. Hygroscopic moisture of cereal grains and flaxseed exposed to atmospheres of different relative humidity. Cereal Chem.2: 275–287.Google Scholar
  34. Cooney, D. G., andR. Emerson. 1964. Thermophilic fungi. Freeman and Co., San Francisco, London, xii + 188 pp.Google Scholar
  35. Couey, H. M. 1965. Inhibition of germination ofAlternaria spores by sulfur dioxide under various moisture conditions. Phytopathology55:525–527.Google Scholar
  36. —, andM. Uota. 1961. Effect of concentration, exposure time, temperature, and relative humidity on the toxicity of sulfur dioxide to the spores ofBotrytis cinerea. Phytopathology51:815–819.Google Scholar
  37. Coy, D. O., andR. W. Tuveson. 1964. Genetic control of conidiation inAspergillus rugulosum. Amer. Jour. Bot.51:290–293.CrossRefGoogle Scholar
  38. Deverall, B. J. 1965. The physical environment of fungal growth.In: “The Fungi,” ed. byG. C. Ainsworth andA. C. Sussman, Academic Press, New York, Vol. I, pp. 543–550.Google Scholar
  39. Diener, U. L. 1955. Sporulation in pure culture byStemphylium solani. Phytopathology45:141–145.Google Scholar
  40. Durbin, R. A. 1955. Straight-line function of growth of microorganisms at toxic levels of carbon dioxide. Science121:734–735.PubMedCrossRefGoogle Scholar
  41. —. 1959. Factors affecting the vertical distribution ofRhizoctonia solani with special reference to CO2 concentration. Amer. Jour. Bot.46:22–25.CrossRefGoogle Scholar
  42. Fields, R. W., andT. H. King. 1962. Influence of storage fungi on deterioration of stored pea seed. Phytopathology52:336–339.Google Scholar
  43. Galun, E., andJ. Gressel. 1966. Morphogenesis inTrichoderma: suppression of photoinduction by 5-fluorouracil. Science151(3711): 696–698.PubMedCrossRefGoogle Scholar
  44. Garric, R. K. 1965. The cryoflora of the Pacific North-West. Amer. Jour. Bot.52:1–8.CrossRefGoogle Scholar
  45. Gaskill, J. O., andJ. C. Gilman. 1939. Role of nitrogen in thermogenesis. Plant Physiology14:31–53.PubMedGoogle Scholar
  46. Gieske, H. W. 1938. Über die für die Verderbnis von in Kühlhäusern eingelagerten Eiern wichtigen Schimmelpilze unter besonderer Berücksichtigung des Schimmelpilzgehaltes der Kühlhausluft. (Abstr.) Zentralbl. Bakteriol. I. Referate.128:239–240.Google Scholar
  47. Goos, R. D., andM. Tschirsch. 1962. Effect of environmental factors on spore germination, spore survival, and growth ofGloesporium musarum. Mycologia54: 353–367.CrossRefGoogle Scholar
  48. Gottleib, D., P. Siminoff, andM. M. Martin. 1952. The production and role of antibiotics in soil. Phytopathology42:493–496.Google Scholar
  49. Greaves, J. E., andL. W. Jones. 1944. The influence of temperature on the microflora of the soil. Soil Sci.48:377–387.Google Scholar
  50. Grebeshova, R. N. 1962. Contents of phosphorus in mutants ofAspergillus niger. Mikrobiologia31:424–428.Google Scholar
  51. Groom, P., andT. Panisset. 1933. Studies onPenicillium chrysogenum in relation to temperature and relative humidity of the air. Ann. Appl. Biol.20:633–660.CrossRefGoogle Scholar
  52. Halisky, P. M., W. C. Schnathorst, andM. A. Shagrun. 1961. Severity and distribution of cotton boll rots as related to temperature. Phytopathology51(8): 501–505.Google Scholar
  53. Harris, J. J. 1933. Formation of “buttone” in sweetened condensed milk byMonilia niger. Zentralbl. Bakteriol. II.88:58–61.Google Scholar
  54. Hawker, L. E. 1957. The physiology of reproduction in fungi. Cambridge Univ. Press, London, 128 pp.Google Scholar
  55. Heintzeller, J. 1939. Das Wachstum der Schimmelpilze in Abhängigkeit von den Hydraturverhältnissen unter verschiedenen Aussenbedingungen. Arch. Mikrobiol.10:92–132.CrossRefGoogle Scholar
  56. Hollander, A., E. R. Santome, E. Zimmer, andM. Demerec. 1945. Quantitative irradiation experiments withNeurospora crassa. Amer. Jour. Bot.32:226–235.CrossRefGoogle Scholar
  57. Imshenetskii, A. A., andO. M. Ulyanova. 1962. Biochemical activity ofFusarium, moniliforme Sheld. Mutants. Mikrobiologia31(5): 832–837.Google Scholar
  58. Ingram, M. 1950. Osmophilic yeast from concentrated orange juice. Jour. Gen. Microbiol. Proc.4: ix.Google Scholar
  59. -. 1957. Microorganisms resisting high concentrations of sugars and salts.In: “Microbial Ecology,” ed. by R. E. O. Williams and C. C. Spicer, Cambridge Univ. Press, ix + 388 pp. (pp. 90–133).Google Scholar
  60. Iterson, C. van. 1904. Die Zersetzung von Cellulose durch aerobe Mikroorganismen. Zentralbl. Bakteriol. II.11:689–698.Google Scholar
  61. Jensen, L. B. 1954. Microbiology of meats. Garrard Press, Champaign, Illinois, xvi + 422 pp.Google Scholar
  62. Jensen, O. 1902. Studien über das Ranzigwerden der Butter. Zentralbl. Bakteriol. II.8:11–16, 42–46, 74–80, 107–114, 140–144, 171–174, 211–216, 248–252, 278–281, 309–312, 342–345, 406–409.Google Scholar
  63. Kaiser, W. J. 1964. Effects of light on growth and sporulation of theVerticillium fungus. Phytopathology54:765–770.Google Scholar
  64. Kennedy, B. W. 1964. Moisture content, mold invasion, and seed viability of stored soybean. Phytopathology54:771–774.Google Scholar
  65. KikkiWA, J., andK. Kosugi. 1937. The fungi grown on dried bonito. (Abstr.) Zentralbl. Bakteriol. II.97:335.Google Scholar
  66. Kita, G. 1914. Einige japanische Schimmelpilze. Zentralbl. Bakteriol. II.41:351–363.Google Scholar
  67. Koehler, B. C. 1938. Fungus growth in shelled corn as affected by moisture. Jour. Agr. Res.56:291–307.Google Scholar
  68. Kopeloff, N., H. Z. E. Perkins, andC. J. Welcome. 1921. Further studies in the deterioration of sugars in storage. Jour. Agr. Res.20:637–653.Google Scholar
  69. Korolev, S. A. 1932. The principles of technical microbiology of dairy produce. “Selkhozgiz,” Moscow.Google Scholar
  70. Kossovicz, A. 1913. Die Zersetzung und Haltbarmachtung der Eier. (Abstr.) Zentralbl. Bakteriol. I.59:380–381.Google Scholar
  71. Kosurina, L. A. 1961. Mutants ofAspergillus niger. Mikrobiologia30:897–904.Google Scholar
  72. Kühl, H. 1910. Über ein Vorkommen niederer pflanzlicher Organismen in Butter. Zentralbl. Bakteriol. II.27:167–169.Google Scholar
  73. Kvasnikov, E. J., andZ. A. Raev. 1939. Disinfection of malt by sulfitation. Mikrobiologia8:478–480.Google Scholar
  74. Larmour, R. K., H. R. Sallans, andB. M. Craig. 1944. Hygroscopic equilibrium of sunflower seed, flaxseed, and soybeans. Can. Jour. Res.22F: 1–8.Google Scholar
  75. Leach, C. M. 1959. Effects of visible and ultraviolet radiations on the sporulation ofAscochyta pisi and other seed-borne fungi. Abstr.) Phytopathology49(9): 543.Google Scholar
  76. —. 1961. The effect of near-ultraviolet irradiation on the sporulation of certain fungi. (Abstr.) Phytopathology51(1): 65–66.Google Scholar
  77. —. 1962. Sporulation of divers species of fungi under near-ultraviolet radiation. Can. Jour. Bot.40:151–161.Google Scholar
  78. Lindsey, D. L. 1965. Ecology of plant pathogens in soil. III. Competition between soil fungi. Phytopathology55(1): 104–110.Google Scholar
  79. Luke, H. H., andL. F. Johnson. 1953. Preliminary studies on an antibiotic produced by a species ofPenicillium. (Abstr.) Phytopathology43:479.Google Scholar
  80. Lukens, R. J. 1963. Photo-inhibition of sporulation inAlternaria solani. Amer. Jour. Bot.50:720–724.CrossRefGoogle Scholar
  81. Malevich, O. A. 1936. A new species of halophilic mold isolated from salted fish,Oospora nikitinskii. Mikrobiologia5:813–817.Google Scholar
  82. Maltschewsky, N. N. 1955a. Über den Verderb von Obstdauerwaren durch Schimmelpilze. Zeitschrift Lebensmittel102:172–185.CrossRefGoogle Scholar
  83. —. 1955b. Über die aus Fruchtgelees und Konfitüren isolierten Schimmelpilze. Zeitschrift Lebensmittel102:236–243.CrossRefGoogle Scholar
  84. Mazur, P. 1956. Studies on the effect of subzero temperatures on the viability of spores ofAspergillus flavus. Jour Gen. Physiol.39:869–888.CrossRefGoogle Scholar
  85. McCrea, A. 1923. Longevity in spores ofAspergillus oryzae andRhizopus nigricans. Science58:426.PubMedCrossRefGoogle Scholar
  86. Miller, J. J., andJ. Reid. 1961. Stimulation by light of sporulation inTrichoderma lignorum. Can. Jour. Bot.39:259–262.Google Scholar
  87. Milner, M., andW. F. Gedoes. 1946a. Grain storage studies III. The relation between moisture content, mold growth, and respiration of soybeans. Cereal Chem.23: 225–247.Google Scholar
  88. ——. 1946b. Grain storage studies IV. Biological and chemical factors involved in the spontaneous heating of soybeans. Cereal Chem.23:449–470.Google Scholar
  89. Morrison, L., andF. Tanner. 1922. Studies on thermophilic bacteria. Jour. Bacteriol.7:343–366.Google Scholar
  90. ——. 1924. Studies on thermophilic bacteria. Bot. Gaz.77: 171–185.CrossRefGoogle Scholar
  91. Nagel, C. M., andG. Semeniuk. 1947. Some mold-induced changes in shelled corn. Plant Physiol.22:20–33.PubMedCrossRefGoogle Scholar
  92. Nobuyoshi, J. 1951. Studies onAspergilli. III. Jour. Agr. Chem. Japan24:283–287.Google Scholar
  93. Norton, D. C. 1954a. Factors in the development of blue damage of Spanish peanuts. Phytopathology44(6): 300–302.Google Scholar
  94. —. 1954b. Antagonism in soil betweenMacrophomina phaseoli and selected soil inhabiting organisms. Phytopathology44(9): 522–524.Google Scholar
  95. Page, R. M. 1965. Light.In: “The Fungi,” ed. byG. C. Ainsworth andA. S. Sussman, Academic Press, New York, pp. 559–574.Google Scholar
  96. Panasenko, V. T. 1936. Fungi diseases of cotton bolls.In: “Diseases of cotton,” Azerbaidzhan Res. Inst. Cotton, Tbilisi, pp. 74–122.Google Scholar
  97. —. 1938. Decomposition of cellulose by fungi. Jour Bot. Inst. Ukrainian Acad. Sci., Kiev,26–27:239–245.Google Scholar
  98. —. 1941. Mold fungi of confectionary and their control. Mikrobiologia10: 470–477.Google Scholar
  99. —. 1944. The ecology of molds. Mikrobiologia13:158–170.Google Scholar
  100. —. 1964a. Some new species of fungi on starch from the Ukraine. Mycologia56:58–63.CrossRefGoogle Scholar
  101. —. 1964b. Species ofMonilia andTorula from food products. Mycologia56:805–808.CrossRefGoogle Scholar
  102. -, andS. M. Moskovetz. 1933. Influence of fusariosen of corn in combined forage. Kiev Res. Inst. Grain, pp. 19–47.Google Scholar
  103. —, andK. S. Tatarenko. 1940. Psychrotolerant fungus flora of food products. Mikrobiologia9:579–584.Google Scholar
  104. Papavizas, G. C., andC. M. Christensen. 1958. Grain storage studies XXVI. Cereal Chem.35:27–34.Google Scholar
  105. Pierson, C. F. 1966. Effect of temperature on the growth ofRhizopus stolonifer. Phytopathology56:276–278.Google Scholar
  106. Qasem, S. A., andC. M. Christensen. 1958. Influence of moisture content, temperature, and time on the deterioration of corn by fungi. Phytopathology43:544–549.Google Scholar
  107. ——. 1960. Influence of various factors on the deterioration of stored corn by fungi. Phytopathology50:703–709.Google Scholar
  108. Ramsey, G. B., andA. A. Bailey. 1930. Effects of ultraviolet radiation upon sporulation inMacrosporium andFusarium. Bot. Gaz.89:113–136.CrossRefGoogle Scholar
  109. Reid, T. 1958. Studies on theFusaria which cause wilt in melons. Can. Jour. Bot.36:507–537.Google Scholar
  110. Riddet, W., andJ. C. Neill. 1936. Butter boxes and mold growth. New Zealand Jour. Agr.53:129–138.Google Scholar
  111. Riedhart, J. M., andC. L. Porter. 1958. Studies of a unique pigment complex and photobiological reaction inPenicillium herquei. Mycologia50:390–402.CrossRefGoogle Scholar
  112. Rudakov, K. J., N. G. Harzstein, andN. A. Sheveleva. 1940.Catenularia fuliginea as a producer of defects in sweetened condensed milk. Mikrobiologia9:45–53.Google Scholar
  113. Scarr, M. P. 1951. Osmophilic yeasts in raw beet and cane sugar. Jour. Gen. Microbiol.5:704–713.Google Scholar
  114. Schippers, B., andA. K. F. Schermer. 1966. Effect of antifungal properties of soil on dissemination of the pathogen and seedling infection originating fromVerticil lium-infected achenes ofSenecio. Phytopathology56:549–552.Google Scholar
  115. Schmidt-Nielsen, S. 1902. Über einige psychrophile Mikroorganismen und ihr Vorkommen. Zentralbl. Bakteriol. II.9:145–147.Google Scholar
  116. SchnathoRST, W. C., andP. M. Halisky. 1960. Severity, prevalence, and ecology of cotton boll rots as related to temperature. (Abstr.) Phytopathology50(9): 653.Google Scholar
  117. Sebek, O. K. 1952. Physiological properties ofFusarium lycopersici andF. vasinfectum. Phytopathology42:119–122.Google Scholar
  118. Semeniuk, G., andW. C. Ball. 1937. Some molds associated with meat in cold storage lockers in Iowa. Proc. Iowa Acad. Sci.44:37–43.Google Scholar
  119. Sie, E. H., H. Sobotka, andH. Baker. 1961. Factor converting mesophilic into thermophilic micro-organisms. Nature192:86–87.PubMedCrossRefGoogle Scholar
  120. Siu, R. G. H. 1951. Microbial decomposition of cellulose. Reinhold Publ. Corp., New York, 531 pp.Google Scholar
  121. Small, J. 1946. pH and plants. Tindall and Co., London, Bailliere, 216 pp.Google Scholar
  122. Smith, W. L., H. Miller, andR. D. Bassett. 1965. Effects of temperature and relative humidity on germination ofRhizopus stolonifer andMonilinia fructicola spores. Phytopathology55:604–606.Google Scholar
  123. Snow, D. 1949. The germination of mold spores at controlled humidities. Ann. Appl. Biol.36:1–13.PubMedCrossRefGoogle Scholar
  124. Stevens, F. L. 1928. Effects of ultraviolet radiation on various fungi. Bot. Gaz.86: 210–228.CrossRefGoogle Scholar
  125. Tanaka, H., andM. W. Miller. 1963. Microbial spoilage of dried prunes. Hilgardia34(6): 167–190.Google Scholar
  126. Tanrikut, S., andE. K. Vaughan. 1951. Studies on the physiology ofSclerotinia sclerotiorum. Phytopathology41:1099–1103.Google Scholar
  127. Tatarenko, K. S. 1954. Influence of light on development of molds. Mikrobiologia23:29–33.Google Scholar
  128. Teitell, L. 1958. Effects of relative humidity on viability of conidia ofAspergilli. Amer. Jour. Bot.45:748–759.CrossRefGoogle Scholar
  129. Tokin, B. P. 1960. Phytoncides, destroyers of microbes. Publ. Sov. Russia, Moskva, 200 pp.Google Scholar
  130. Tomkins, R. G. 1929. Studies on the growth of molds. Roy. Soc. Proc., Ser. B, London,105:375–401.CrossRefGoogle Scholar
  131. Tuite, J. F., andC. M. Christensen. 1955. Grain storage studies, XVI. Cereal Chem.32:1–11.Google Scholar
  132. ——. 1957. Grain storage studies, XXIII and XXIV. Phytopathology47: 323–327.Google Scholar
  133. Tyner, L. E. 1966. Associative effects of fungi onCochliobolus sativus. Phytopathology56:776–780.Google Scholar
  134. Waksman, S. A. 1916. Soil fungi and their activity. Soil Sci.2:103–155.CrossRefGoogle Scholar
  135. —. 1944. Three decades with soil fungi. Soil Sci.58:89–115.Google Scholar
  136. Weimer, J. L., andL. L. Harter. 1923. Temperature relation of eleven species ofRhizopus. Jour. Agr. Res.24:1–40.Google Scholar
  137. Wolf, F. A., andF. T. Wolf. 1947. The Fungi. John Wiley & Sons, New York, I: × + 438 pp.; II:xii + 538 pp.Google Scholar
  138. Zaccharia, A. T., M. N. Hansen, andW. Snyder. 1956. The influence of environmental factors on cultural characters ofFusarium species. Mycologia48:459–467.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1967

Authors and Affiliations

  • Vasil T. Panasenko
    • 1
  1. 1.San Francisco

Personalised recommendations