The Botanical Review

, Volume 31, Issue 4, pp 537–564 | Cite as

The physiology of uredospores of the rust fungi

  • Richard C. Staples
  • Willard K. Wynn
Interpreting Botanical Progress


Botanical Review Germ Tube Stem Rust Rust Fungus Wheat Stem Rust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Allen, Paul J. 1955. The role of a self-inhibitor in the germination of rust uredospores. Phytopathology45: 259–266.Google Scholar
  2. 2.
    —. 1957. Properties of a volatile fraction from uredospores ofPuccinia graminis var.tritici affecting their germination and development. I. Biological activity. Plant Physiol.32: 385–389.PubMedGoogle Scholar
  3. 3.
    —. 1959. Metabolic considerations of obligate parasitism.In: Holton, C. S. [ed.] Plant Pathology, Problems and Progress. 1908–1958. Univ. Wis., Madison, Wis., pp. 119–129.Google Scholar
  4. 4.
    Atkinson, T. G., andP. J. Allen. 1958. Germination of wheat stem rust uredosporesen masse. [Abstr.] Plant Physiol.33(Suppl.): ix.Google Scholar
  5. 5.
    Beevers, Harry. 1961. Respiratory Metabolism in Plants. Row, Peterson Co., Evanston, Ill., 232 pp.Google Scholar
  6. 6.
    Bell, A. A. 1960. Partial purification of self-inhibitors of germination from uredospores ofUromyces phaseoli var.typica. [Abstr.] Phytopathology50: 629.Google Scholar
  7. 7.
    Bromfield, K. R. 1961. The effect of postinoculation temperature on seedling reaction of selected wheat varieties to stem rust. Phytopathology51: 590–593.Google Scholar
  8. 8.
    —. 1961. Effect of variations in temperature on the reaction of temperature-sensitive wheat varieties to wheat stem rust. Phytopathology51: 794–797.Google Scholar
  9. 9.
    —. 1964. Cold-induced dormancy and its reversal in uredospores ofPuccinia graminis varities. Phytopathology54: 68–74.Google Scholar
  10. 10.
    Broyles, James W. 1952. Sugar and amino acid composition and variations found in uredospores of races of cereal rusts. [Abstr.] Phytopathology42: 3–4.Google Scholar
  11. 11.
    Burrows, V. D. 1960. Nature of the resistance of oat varieties to races of oat stem rust. Nature188: 957–958.Google Scholar
  12. 12.
    Caltrider, Paul G., andDavid Gottlieb. 1963. Respiratory activity and enzymes for glucose catabolism in fungus spores. Phytopathology53: 1021–1030.Google Scholar
  13. 13.
    —,S. Ramachandran, andDavid Gottlieb. 1963. Metabolism during germination and function of glyoxylate enzymes in uredospores of rust fungi. Phytopathology53: 86–92.Google Scholar
  14. 14.
    Carpenter, W. D., andHarry Beevers. 1959. Distribution and properties of isocitritase in plants. Plant Physiol.34: 403–409.PubMedGoogle Scholar
  15. 15.
    Cochrane, Vincent W. 1945. The effect of artificial light on germination of urediospores ofPhragmidium mucronatum (Fr.) Schlect. Phytopathology35: 458–462.Google Scholar
  16. 16.
    —. 1958. Physiology of Fungi. John Wiley & Sons, New York, 524 pp.Google Scholar
  17. 17.
    Cutter, Victor M., Jr. 1951. The isolation of plant rusts upon artificial media and some speculations on the metabolism of obligate plant parasites. Trans. New York Acad. Sci.14: 103–108.Google Scholar
  18. 18.
    —. 1959. Studies on the isolation and growth of plant rusts on host tissue cultures and upon synthetic media. I. Gymnosporangium. Mycologia51: 248–295.Google Scholar
  19. 19.
    —. 1960. Studies on the isolation and growth of plant rusts in host tissue cultures and upon synthetic media. II.Uromyces ari-triphylli. Mycologia52: 726–742.Google Scholar
  20. 20.
    Dickinson, Sydney. 1949. Studies in the physiology of obligate parasitism. I. The stimuli determining the direction of growth of the germ-tubes of rust and mildew spores. Ann. Bot., N. S.,13: 89–104.Google Scholar
  21. 21.
    —. 1949. Studies in the physiology of obligate parasitism. II. The behaviour of the germ-tubes of certain rusts in contact with various membranes. Ann. Bot., N. S.,13: 219–236.Google Scholar
  22. 22.
    —. 1949. Studies in the physiology of obligate parasitism. III. The growth of rust mycelium out of infected leaves. Ann. Bot., N. S.,13: 337–343.Google Scholar
  23. 23.
    —. 1949. Studies in the physiology of obligate parasitism. IV. The formation on membranes of haustoria by rust hyphae and powdery mildew germ-tubes. Ann. Bot., N. S.,13: 345–353.Google Scholar
  24. 24.
    —. 1955. Studies in the physiology of obligate parasitism. V. Further differences between the uredospore germ-tubes and leaf hyphae ofPuccinia triticina. Ann. Bot., N. S.,19: 161–171.Google Scholar
  25. 25.
    Dockter, Kenneth W., andD. Stuart Frear. 1960. Malic dehydrogenase and diaphorase from germinated flax rust uredospores. Proc. North Dakota Acad. Sci.14: 95–101.Google Scholar
  26. 26.
    Doubly, John A., H. H. Flor, andC. O. Clagett. 1960. Relation of antigens ofMelampsora lini andLinum usitatissimum to resistance and susceptibility. Science131: 229.PubMedGoogle Scholar
  27. 27.
    Emge, Robert G. 1958. The influence of light and temperature on the formation of infection-type structures ofPuccinia graminis var.tritici on artificial substrates. Phytopathology48: 649–652.Google Scholar
  28. 28.
    Evtushenko, G. A. 1960. Biochemical characteristics of yellow and brown rusts of wheat. Materialy Pervoga Koordinats. Soveshchaniya Mikologov Resp. Srednei Azii i Kazakhstana, Akad. Nauk Kirgizsk. SSR, Inst. Botan. 1960: 140–154. [In Chem. Abstr.57: 6408i.]Google Scholar
  29. 29.
    Farkas, G. L., andG. A. Ledingham. 1959. Studies on the polyphenol-polyphenoloxidase system of wheat stem rust uredospores. Can. Jour. Microbiol.5: 37–46.Google Scholar
  30. 30.
    ——. 1959. The relation of self-inhibition of germination to the oxidative metabolism of stem rust uredospores. Can. Jour. Microbiol.5: 141–151.Google Scholar
  31. 31.
    Flangas, Arthur L., andJames G. Dickson. 1961. Complementary genetic control of differential compatibility in rusts. Theoretical application to analysis of hostobligate parasite interaction. Quart. Rev. Biol.36: 254–272.PubMedGoogle Scholar
  32. 32.
    ——. 1961. The genetic control of pathogenicity, serotypes and variability inPuccinia sorghi. Amer. Jour. Bot.48: 275–285.Google Scholar
  33. 33.
    Forsyth, F. R. 1955. The nature of the inhibiting substance emitted by germinating uredospores ofPuccinia graminis var.tritici. Can. Jour. Bot.33: 363–373.Google Scholar
  34. 34.
    —. 1964. Surfactants as fungicides. Can. Jour. Bot.42: 1335–1347.Google Scholar
  35. 35.
    Frear, D. S. 1960. Fatty acid metabolism in flax rust uredospores. North Dakota Farm Res.21(4): 18–20.Google Scholar
  36. 36.
    —, andM. A. Johnson. 1961. Enzymes of the glyoxylate cycle in germinating uredospores ofMelampsora lini (Pers.) Lév. Biochim. Biophys. Acta47: 419–421.PubMedGoogle Scholar
  37. 37.
    French, Richard C. 1961. Stimulation of uredospore germination in wheat stem rust by terpenes and related compounds. Bot. Gaz.122: 194–198.Google Scholar
  38. 38.
    —. 1962. Interaction of aldehydes with uredospores of stem rust of wheat. Bot. Gaz.124: 121–128.Google Scholar
  39. 39.
    —,L. M. Massey, Jr., andR. L. Weintraub. 1957. Properties of a volatile fraction from uredospores ofPuccinia graminis var.tritici affecting their germination and development. II. Some physical and chemical properties. Plant Physiol.32: 389–393.PubMedGoogle Scholar
  40. 40.
    —,Richard B. Searles, andJames F. Novotny. 1963. Properties of bacteria isolated from wheat stem rust spores. Phytopathology54: 970–973.Google Scholar
  41. 41.
    —, andRobert L. Weintraub. 1957. Pelargonaldehyde as an endogenous germination stimulator of wheat rust spores. Arch. Biochem. Biophys.72: 235–237.PubMedGoogle Scholar
  42. 42.
    Givan, Curtis V., andK. R. Bromfield. 1964. Light inhibition of uredospore germination inPuccinia recondita. Phytopathology54: 116–117.Google Scholar
  43. 43.
    ——. 1964. Light inhibition of uredospore germination inPuccinia graminis var.tritici. Phytopathology54: 382–384.Google Scholar
  44. 44.
    Harley, J. L., andHarry Beevers. 1963. Acetate utilization by maize roots. Plant Physiol.38: 117–123.PubMedGoogle Scholar
  45. 45.
    Hobbs, C. D., andM. C. Futrell. 1963. Influence of vitamins and other compounds on the degree of infection of wheat byPuccinia graminis var.tritici. Phytopathology53: 230–231.Google Scholar
  46. 46.
    Hotson, Hugh Howison. 1953. The growth of rust in tissue culture. Phytopathology43: 360–363.Google Scholar
  47. 47.
    —, andVictor M. Cutter, Jr. 1951. The isolation and culture ofGymnosporangium juniperi-virginanae Schw. upon artificial media. Proc. U. S. Natl. Acad. Sci.37: 400–403.Google Scholar
  48. 48.
    Hougen, F. W., B. M. Craig, andG. A. Ledingham. 1958. The oil of wheat stem rust uredospores. I. The sterol and carotenes of the unsaponifiable matter. Can. Jour. Microbiol.4: 521–529.Google Scholar
  49. 49.
    Hurd-Karrer, Annie M., andH. A. Rodenhiser. 1947. Structures corresponding to appressoria and substomatal vesicles produced on nutrient-solution agar by germinating urediospores of cereal rusts. [Abstr.] Phytopathology37: 11.Google Scholar
  50. 50.
    Johnson, M. A., andD. S. Frear. 1962. The conversion of lipids to carbohydrates by germinating flax rust uredospores,Melampsora lini (Pers.) Lév. [Abstr.] Plant Physiol.37(Suppl.): lx.Google Scholar
  51. 51.
    Jones, J. P., andJ. P. Snow. 1965. Amino acids released during germination of S35-labeled crown rust spores. [Abstr.] Phytopathology55: 499.Google Scholar
  52. 52.
    Kasting, R., A. J. McGinnis, andW. C. Broadfoot. 1959. Biosynthesis of some amino-acids from sucrose by germinating uredospores of wheat stem rust, race 15B. Nature184: 1943.Google Scholar
  53. 53.
    King, Tsoo E., Clarence A. Ryan, Vernon H. Cheldelin, andJ. Ken McDonald. 1960. Succinic dehydrogenase of the ergot fungus and mussel. Biochim. Biophys. Acta45: 398–400.PubMedGoogle Scholar
  54. 54.
    Kupke, Donald W. 1962. Correlation of a soluble leaf protein with chlorophyll accumulation. Jour. Biol. Chem.237: 3287–3291.Google Scholar
  55. 55.
    Kuprevich, W. Th. 1940. Intercellular enzymes of rusts and some other parasitic fungi. Compt. Rend. (Doklady) Acad. Sci. U.R.S.S.26: 702–705.Google Scholar
  56. 56.
    Lange, C. T., C. H. Kingsolver, J. E. Mitchell, andE. Cherry. 1958. Determination of the effects of different temperatures on uredial infection withPiccinia graminis var.tritici. Phytopathology48: 658–660.Google Scholar
  57. 57.
    Loegering, William Q., andDaniel L. Harmon. 1962. Effect of thawing temperature on urediospores ofPuccinia graminis f. sp.tritici frozen in liquid nitrogen. Plant Dis. Rep.46: 299–302.Google Scholar
  58. 58.
    McConnell, W. B., andA. J. Finlayson. 1964. Studies on wheat plants with carbon-14 compounds. XX. The metabolism of propionic acid. Can. Jour. Biochem.42: 187–193.Google Scholar
  59. 59.
    McCracken, F. I., andJ. R. Burleigh. 1962. Influence of light and temperature onin vitro germination ofPuccinia striiformis uredospores. [Abstr.] Phytopathology52: 742.Google Scholar
  60. 60.
    McKillican, M. E. 1960. A survey of amino acid contents of the uredospores of some races of wheat rust (Puccinia graminis). Can. Jour. Chem.38: 244–247.Google Scholar
  61. 61.
    Mandelstam, J. 1960. The intracellular turnover of protein and nucleic acids and its role in biochemical differentiation. Bacteriol. Rev.24: 289–308.PubMedGoogle Scholar
  62. 62.
    Manners, J. G., andS. S. Bampton. 1957. Fusion of uredospore germ tubes inPuccinia graminis. Nature179: 483–484.Google Scholar
  63. 63.
    Morel, Georges. 1948. Recherches sur la culture associée de parasites obligatoires et de tissus végétaux. Ann. Epiphyties (N.S.)14: 123–234.Google Scholar
  64. 64.
    Naito, Nakato, Toshikazu Tani, andYoshimatsu Okumura. 1960. The germtube elongation and the infection-type structures formation of uredospores ofPuccinia coronata andUromyces alopecuri on nutrient agar. Kagawa Daigaku Nogakubu Gakuzyutu Hokoku12: 84–92.Google Scholar
  65. 65.
    Nelson, R. R., Roy D. Wilcoxson, andJ. J. Christensen. 1955. Heterocaryosis as a basis for variation inPuccinia graminis var.tritici. Phytopathology45: 639–643.Google Scholar
  66. 66.
    Nozzolillo, Constance, andJ. H. Craigie. 1960. Growth of the rust fungusPuccinia helianthi on tissue cultures of its host. Can. Jour. Bot.38: 227–233.Google Scholar
  67. 67.
    Prentice, Neville, andL. S. Cuendet. 1954. Chemical composition of uredospores of wheat stem rust (Puccinia graminis tritici). Nature174: 1151.Google Scholar
  68. 68.
    ——, andF. Smith. 1959. The constitution of a glucomannan from wheat stem rust (Puccinia graminis tritici) urediospores. Jour. Amer. Chem. Soc.81: 684–688.Google Scholar
  69. 69.
    Pritchard, Nancy. 1965. Germination inhibitors from spores of rust and smut fungi. [Abstr.] Phytopathology55: 505.Google Scholar
  70. 70.
    Reisener, H. J. 1964. Über den Einfluss von Fettsäuren mittlerer Kettenlänge auf die Atmung der Uredosporen vonPuccinia graminis var.tritici. Naturforsch.19b: 453–454.Google Scholar
  71. 71.
    —,A. J. Finlayson, andW. B. McConnell. 1963. The metabolism of valerate-2-C14 by uredospores of wheat stem rust. Can. Jour. Biochem. Physiol.41: 1–7.Google Scholar
  72. 72.
    ———. 1964. The metabolism of valerate-3-C14 and -5-C14 by wheat stem rust uredospores. Can. Jour. Biochem.42: 327–332.Google Scholar
  73. 73.
    ———, andG. A. Ledingham. 1963. The metabolism of propionate by wheat stem rust uredospores. Can. Jour. Biochem. Physiol.41: 737–743.Google Scholar
  74. 74.
    —,H. R. Goldschmid, G. A. Ledingham, andA. S. Perlin. 1962. Formation of trehalose and polyols by wheat stem rust (Puccinia graminis tritici) uredospores. Can. Jour. Biochem. Physiol.40: 1248–1251.Google Scholar
  75. 75.
    —,W. B. McConnell, andG. A. Ledingham. 1961. Effect of short-chain fatty acids on respiration of wheat stem rust uredospores. Can. Jour. Microbiol.7: 865–868.Google Scholar
  76. 76.
    ———. 1961. Studies on the metabolism of valerate-1-C14 by uredospores of wheat stem rust. Can. Jour. Biochem. Physiol.39: 1559–1566.Google Scholar
  77. 77.
    Rodenhiser, H. A., andAnnie M. Hurd-Karrer. 1947. Evidence of fusion bodies from urediospore germ tubes of cereal rusts on nutrient-solution agar. Phytopathology37: 744–756.Google Scholar
  78. 78.
    Sahai, B. I., andMichael Shaw. 1961. The physiology of host-parasite relations. VIII. Effects of rust infection on ascorbic acid and glutathione in wheat leaves. Can. Jour. Bot.39: 1327–1336.Google Scholar
  79. 79.
    Schein, Richard D. 1962. Storage viability of bean rust uredospores. Phytopathology52: 653–657.Google Scholar
  80. 80.
    Searles, Richard B., andRichard C. French. 1963. The conversion of furfural and cinnamaldehyde by uredospores of wheat stem rust and associated bacteria. [Abstr.] Plant Physiol.38(Suppl.): lvi.Google Scholar
  81. 81.
    Sharp, E. L., andR. G. Emge. 1958. A “tissue transplant” technique for obtaining abundant sporulation of races ofPuccinia graminis var.tritici on resistant varieties. Phytopathology48: 696–697.Google Scholar
  82. 82.
    —,C. G. Schmitt, J. M. Staley, andC. H. Kingsolver. 1958. Some critical factors involved in establishment ofPuccinia graminis var.tritici. Phytopathology48: 469–474.Google Scholar
  83. 83.
    —, andFrederick G. Smith. 1952. The influence of pH and zinc on vesicle formation inPuccinia coronata avenae Corda. Phytopathology42: 581–582.Google Scholar
  84. 84.
    —. 1957. Further study of the preservation ofPuccinia uredospores. Phytopathology47: 423–429.Google Scholar
  85. 85.
    Shaw, Michael. 1959 [1961]. The respiratory pattern in diseased plants with particular reference to rust-infected leaves.In: Recent Advances in Botany2: 1017–1021.Google Scholar
  86. 86.
    —. 1964. The physiology of rust uredospores. Phytopath. Zeitschr.50: 159–180.Google Scholar
  87. 87.
    —, andA. R. Hawkins. 1958. The physiology of host-parasite relations. V. A preliminary examination of the level of free endogenous indoleacetic acid in rusted and mildewed cereal leaves and their ability to decarboxylate exogenously supplied radioactive indoleacetic acid. Can. Jour. Bot.36: 1–16.Google Scholar
  88. 88.
    Shu, P., andG. A. Ledingham. 1956. Enzymes related to carbohydrate metabolism in uredospores of wheat stem rust. Can. Jour. Microbiol.2: 489–495.Google Scholar
  89. 89.
    —,A. C. Neish, andG. A. Ledingham. 1956. Utilization of added substrates by uredospores of wheat stem rust. Can. Jour. Microbiol.2: 559–563.Google Scholar
  90. 90.
    —,Kathleen G. Tanner, andG. A. Ledingham. 1954. Studies on the respiration of resting and germinating uredospores of wheat stern rust. Can. Jour. Bot.32: 16–23.Google Scholar
  91. 91.
    Smith, J. E. 1963. Glutamic dehydrogenase from uredospores ofPuccinia helianthi Schw. Can. Jour. Microbiol.9: 345–351.Google Scholar
  92. 92.
    —. 1965. Glutamine synthesis in uredospores ofPuccinia helianthi Schw. Can. Jour. Microbiol.11: 381–383.Google Scholar
  93. 93.
    —, andE. R. Waygood 1963. Enzyme-coenzyme relationships in glutamic acid metabolism of rust-infected sunflower cotyledons. Can. Jour. Bot.41: 41–54.Google Scholar
  94. 94.
    Staples, Richard C. 1957. The organic acid composition and succinoxidase activity of the uredospore of the leaf and stem rust fungi. Contrib. Boyce Thompson Inst.19: 19–31.Google Scholar
  95. 95.
    —. 1962. Initial products of acetate utilization by bean rust uredospores. Contrib. Boyce Thompson Inst.21: 487–497.Google Scholar
  96. 96.
    -. 1965. Acid phosphatases from healthy and rust infected Pinto bean leaves. II. Effect of removing apical meristem. Contrib. Boyce Thompson Inst.23: (in press).Google Scholar
  97. 97.
    —,H. P. Burchfield, andJoyce G. Baker. 1961. Comparative biochemistry of obligately parasitic and saprophytic fungi. I. Assimilation of C14-labeled substrates by nongerminating spores. Contrib. Boyce Thompson Inst.21: 97–114.Google Scholar
  98. 98.
    —, andMark A. Stahmann. 1964. Changes in protein and several enzymes in susceptible bean leaves after infection by the bean rust fungus. Phytopathology54: 760–764.Google Scholar
  99. 99.
    —, andRiksh Syamananda. 1962. Some consequences of exposingPuccinia sorghi uredospores to glutamate. [Abstr.] Phytopathology52: 28–29.Google Scholar
  100. 100.
    ——,Vivian Kao, andRichard J. Block. 1962. Comparative biochemistry of obligately parasitic and saprophytic fungi. II. Assimilation of C14-labeled substrates by germinating spores. Contrib. Boyce Thompson Inst.21: 345–362.Google Scholar
  101. 101.
    —, andLeonard H. Weinstein. 1959. Dark carbon dioxide fixation by uredospores of rust fungi. Contrib. Boyce Thompson Inst.20: 71–82.Google Scholar
  102. 102.
    Suryanarayanan, S., andW. B. McConnell. 1964. The metabolism of acetate by wheat stem rust uredospores. Can. Jour. Biochem.42: 883–888.Google Scholar
  103. 103.
    ——. 1965. The metabolism of pelargonate-1-C14 by wheat stem rust uredospores. Can. Jour. Biochem.43: 91–96.Google Scholar
  104. 104.
    Syamananda, Riksh, andJ. G. Dickson. 1959. The influence of temperature and light on rust reaction of inbred lines of corn inoculated with specific lines ofPuccinia sorghi. Phytopathology49: 102–106.Google Scholar
  105. 105.
    —, andRichard C. Staples. 1963. The carbohydrate content of rusted corn leaves. Contrib. Boyce Thompson Inst.22: 1–8.Google Scholar
  106. 106.
    ——, andRichard J. Block. 1962. Automatic analysis of sugars separated by column chromatography. Contrib. Boyce Thompson Inst.21: 363–369.Google Scholar
  107. 107.
    Talieva, M. N., andL. N. Andreev. 1957. The effect of growth factors (bacterial vitamins) on spore germination of brown and yellow wheat rust. (English Transi.) Dokl.-Botan. Sci. Sect.117 (1-6): 288–290.Google Scholar
  108. 108.
    Tani, Toshikazu, andNakato Naito. 1960. D-Mannitol in the spores ofPuccinia coronata andStereostratum corticioides. Kagawa Daigaku Nogakubu Gakuzyutu Hokoku12: 93–96.Google Scholar
  109. 109.
    Tulloch, A. P. 1960. The oxygenated fatty acids of the oil of wheat stem rust uredospores. Can. Jour. Chem.38: 204–207.Google Scholar
  110. 110.
    —. 1963. Enzymatic production of (+) thero-9,10-dihydroxyoctadecanoic acid in the spores of plant rusts. Can. Jour. Biochem. Physiol.41: 1115–1121.Google Scholar
  111. 111.
    —. 1964. The component fatty acids of oils found in spores of plant rusts and other fungi. Part IV. Can. Jour. Microbiol.10: 359–364.Google Scholar
  112. 112.
    —,B. M. Craig, andG. A. Ledingham. 1959. The oil of wheat stem rust uredospores. II. The isolation of cis-9,10-epoxyoctadecanoic acid, and the fatty acid composition of the oil. Can. Jour. Microbiol.5: 485–491.Google Scholar
  113. 113.
    —, andG. A. Ledingham. 1960. The component fatty acids of oils found in spores of plant rusts and other fungi. Can. Jour. Microbiol.6: 425–434.Google Scholar
  114. 114.
    ——. 1962. The component fatty acids of oils found in spores of plant rusts and other fungi. Part II. Can. Jour. Microbiol.8: 379–387.Google Scholar
  115. 115.
    ——. 1964. The component fatty acids of oils found in spores of plant rusts and other fungi. Part III. Can. Jour. Microbiol.10: 351–358.Google Scholar
  116. 116.
    Turel, Franziska L. M. 1955. Influence of methyl-p-hydroxybenzoate, chlortetracycline, and certain trace metals on germination of uredospores ofMelampsora occidentalis. Can. Jour. Microbiol.1: 293–298. [In Chem. Abstr.49: 7659f. 1955.]Google Scholar
  117. 117.
    ——, andG. A. Ledingham. 1957. Production of aerial mycelium and uredospores byMelampsora lini (Pers.) Lév. on flax leaves in tissue culture. Can. Jour. Microbiol.3: 813–819. 118.Google Scholar
  118. 118.
    —. 1959. Utilization of labelled substrates by the mycelium and uredospores of flax rust. Can. Jour. Microbiol.5: 537–545.Google Scholar
  119. 119.
    Van Sumere, C. F., J. A. De Greef, andH. Teuchy. 1961. The existence of an adaptive mucilagenase in uredospores ofPuccinia Graminis var.Tritici. Naturwissenschaften48: 306.Google Scholar
  120. 120.
    —,C. Van Sumere-De Preter, andG. A. Ledingham. 1957. Cell-wallsplitting enzymes ofPuccinia graminis var.tritici. Can. Jour. Microbiol.3: 761–770.Google Scholar
  121. 121.
    ——,L. C. Vining, andG. A. Ledingham. 1957. Coumarins and phenolic acids in the uredospores of wheat stem rust. Can. Jour. Microbiol.3: 847–862.Google Scholar
  122. 122.
    Weintraub, Robert L., William E. Miller, andEdward J. Schantz. 1958. Chemical stimulation of germination of spores ofPiricularia oryzae. Phytopathology48: 7–10.Google Scholar
  123. 123.
    White, G. A., andG. A. Ledingham. 1961. Studies on the cytochrome oxidase and oxidation pathway in uredospores of wheat stem rust. Can. Jour. Bot.39: 1131–1148.Google Scholar
  124. 124.
    Williams, P. G., andG. A. Ledingham. 1964. Preparation and properties of a mitochondrial fraction from wheat stem rust uredospores. Can. Jour. Bot.42: 497–505.Google Scholar
  125. 125.
    ——. 1964. Fine structure of wheat stem rust uredospores. Can. Jour. Bot.42: 1503–1508.Google Scholar
  126. 126.
    Wilson, Eugene M. 1958. Aspartic and glutamic acid as self-inhibitors of uredospore germination. Phytopathology48: 595–600.Google Scholar
  127. 127.
    Wood, Harland G., Joseph Katz, andBernard R. Landau. 1963. Estimation of pathways of carbohydrate metabolism. Biochem. Zeitschr.338: 809–847.Google Scholar
  128. 128.
    Yarwood, C. E. 1950. Water content of fungus spores. Amer. Jour. Bot.37: 636–639.Google Scholar
  129. 129.
    —. 1956. Simultaneous self-stimulation and self-inhibition of uredospore germination. Mycologia48: 20–24.Google Scholar

Copyright information

© The New York Botanical Garden 1965

Authors and Affiliations

  • Richard C. Staples
    • 1
  • Willard K. Wynn
    • 1
  1. 1.Boyce Thompson Institute for Plant Research, Inc.Yonkers

Personalised recommendations