Advertisement

The Botanical Review

, Volume 56, Issue 3, pp 236–274 | Cite as

New perspectives on the angiosperm female gametophyte

  • David Haig
Article

Abstract

This review builds upon previous classifications of angiosperm female gametophytes but offers two new perspectives. Firstly, the course of development is compared to an algorithm: a predetermined set of rules that produces a mature female gametophyte. This analogy allows hypotheses to be developed as to what changes in the “developmental program” are responsible for variant forms of development. Secondly, the review recognizes that the four meiotic products of a megaspore mother cell have different genetic constitutions and may have conflicting interests. In most cases, only one member of a megaspore tetrad gives rise to a functional egg. This megaspore is called the germinal spore. The other members of the tetrad are called somatic spores. Somatic spores do not give rise to functional eggs and, therefore, cannot leave direct genetic descendants.

Non-monosporic embryo sacs are genetic chimeras containing derivatives of more than one megaspore nucleus. Conflict may arise within such embryo sacs between the derivatives of the germinal megaspore nucleus and the derivatives of somatic megaspore nuclei. “Antipodal eggs” and chalazal “strike” are interpreted as evidence of this conflict. The behavior of somatic spores and their derivatives is often variable for different embryo sacs produced by the same sporophyte. This has created difficulties for existing classifications of embryo sac “types” because more than one type is sometimes recognized within a species. A new classification of developmental algorithms is presented that emphasizes the fate of the germinal spore and its derivatives.

Keywords

Botanical Review Female Gametophyte Polar Nucleus Antipodal Cell Polygonum Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Dieser Überblick baut sich auf vorangehende Klassifizierungen des weiblichen Gametophyten der Angiospermen auf, zeigt aber zwei neue Perspektiven auf. Erstens wird der Entwicklungsverlauf vergleichen mit einem Algorithmus: eine vorbestimmte Reihe von Regeln, die den entwickelten weiblichen Gametophyten hervorbringen. Diese Analogie erlaubt, die Hypothese aufzustellen, daß eine Änderung im “Entwicklungs-Programm” verantwortlich ist für verschiedene Formen der Entwicklung. Zweitens zeigt dieser Überblick, daß die vier meiotischen Produkte der Megasporenmutterzelle unterschiedliche genetische Zusammensetzung und vielleicht widersprüchliche Interessen haben. Meistens entwickelt sich nur aus einer Zelle der Megasporentetrade eine funktionsfähige Eizelle. Diese Megaspore wird “Keimspore” gennant. Die übrigen drei Megasporen werden als “somalische Sporen” bezeichnet. Aus den somatischen Sporen können sich keine funktionsfähigen Eizellen und somit keine direkten genetischen Nachkommen bilden.

Nicht-monospore Embryosäcke sind genetische Chimären, die Derivate von mehr als einem Megasporennukleus enthalten. Konflikte können innerhalb dieser Embryosäcke entstehen zwischen Derivaten des Keim-Megasporennukleus und Derivaten des somatischen Sporennukleus. Die “Antipodialeizellen” und der “Teilungsstreik” der chalazalen Kerne werden als Beweis für diesen Konflikt interpretiert. Das Verhalten der somatischen Sporen und ihrer Derivate ist oft variable für verschiedene Embryosäcke, die vom gleichen Sporophyten produziert wurden. Dies verursachte Schwierigkeiten in der bestehende Klassifizierung der Embryosack-Typen, weil manchmal mehr als ein Typus innerhalb einer Art auftreten kann. Eine neue Klassifizierung auf Grund des algorithmischen Entwicklungsverlaufes wird hier vorgestellt, der die Entwicklung der Keimspore und ihrer Derivate hervorhebt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Arekal, G. D. &C. R. Nagendran. 1976. Embryo sac ofHydrobryopsis sessilis (Podostemaceae)—Origin, organization and significance. Bot. Notiser128: 332–338.Google Scholar
  2. — &G. W. Shivamurthy. 1978. Female gametophyte in two species ofBalanophora— A reinvestigation. Phytomorphology28: 7–13.Google Scholar
  3. Bambacioni-Mezzetti, V. 1931. Nuove ricerche sull’embriologia delle Gigliacee. Ann. di Bot. (Roma)19: 365–382.Google Scholar
  4. Battaglia, E. 1951. The male and female gametophytes of angiosperms—An interpretation. Phytomorphology1: 86–116.Google Scholar
  5. —. 1971. The embryo sac of Podostemaceae—An interpretation. Caryologia24: 403–420.Google Scholar
  6. Bhandari, N. N. &P. Chitralekha. 1989. Cellularization of the female gametophyte inRanunculus sceleratus. Canad. J. Bot.67: 1325–1330.Google Scholar
  7. — &S. C. A. Vohra. 1983. Embryology and affinities of Viscaceae. Pages 69–86in M. Calder & P. Bernhardt (eds.), The biology of mistletoes. Academic Press Australia, Sydney.Google Scholar
  8. Bhatnagar, S. P. & A. K. Bhatnagar. 1986. Review of embryology of angiosperms, B. M. Johri (ed.) 1984. Phytomorphology36: 174–177.Google Scholar
  9. — &B. M. Johri. 1983. Embryology of Loranthaceae. Pages 47–68in M. Calder & P. Bernhardt (eds.), The biology of mistletoes. Academic Press Australia, Sydney.Google Scholar
  10. Björnstad, I. N. 1970. Comparative embryology of Asparagiodeae—Polygonateae, Liliaceae. Nytt Mag. Bott.17: 169–207.Google Scholar
  11. Bouman, F. 1984. The ovule. Pages 123–157in B. M. Johri (ed.), Embryology of angiosperms. Springer-Verlag, Berlin.Google Scholar
  12. Boyes, J. W. 1939. Development of the embryo sac ofPlumbagella micrantha. Amer. J. Bot. 26: 539–547.Google Scholar
  13. — &E. Battaglia. 1951. The tetrasporic embryo sacs ofPlumbago coccinea, P. scandens, andCeratostigma willmottianum. Bot. Gaz.112: 485–489.Google Scholar
  14. Briggs, C. L., M. Westoby, P. M. Selkirk &R. J. Oldfield. 1987. Embryology of early abortion due to limited maternal resources inPisum sativum L. Ann. Bot.59: 611–619.Google Scholar
  15. Brown, W. H. 1908. The nature of the embryo sac ofPeperomia. Bot. Gaz.46: 445–460.Google Scholar
  16. Cass, D. D. 1972. Occurrence and development of a filiform apparatus in the egg ofPlumbago capensis. Amer. J. Bot.59: 279–283.Google Scholar
  17. —,D. J. Peteya &B. L. Robertson. 1985. Megagametophyte development inHordeum vulgare. 1. Early megagametogenesis and the nature of cell wall formation. Canad. J. Bot.63:2164–2171.Google Scholar
  18. —,——. 1986. Megagametophyte development inHordeum vulgare. 2. Later stages of wall development and morphological aspects of megagametophyte cell differentiation. Canad. J. Bot.64: 2327–2336.Google Scholar
  19. Charnov, E. L. 1979. Simultaneous hermaphroditism and sexual selection. Proc. Nat. Acad. Sci. USA76: 2480–2484.PubMedGoogle Scholar
  20. Cooper, D. C. 1939. Development of megagametophyte inErythronium albidum. Bot. Gaz.100: 862–867.Google Scholar
  21. Corner, E. J. H. 1976. The seeds of dicotyledons. Vol. 1. Cambridge University Press, Cambridge.Google Scholar
  22. Cosmides, L. M. &J. Tooby. 1981. Cytoplasmic inheritance and intragenomic conflict. J. Theor. Biol.89: 83–129.PubMedGoogle Scholar
  23. Dahlgren, K. V. O. 1928. Die embryologie einiger Alismatazeen. Svensk Bot. Tidskr.22: 1–17.Google Scholar
  24. —. 1934. Die Embryosackentwicklung vonEchinodorus macrophyllus undSagittaria sagittifolia. Planta21: 602–612.Google Scholar
  25. Dahlgren, R. M. T. 1980. A revised system of classification of the angiosperms. Bot. J. Linn. Soc.80:91–124.Google Scholar
  26. —,H. T. Clifford &P. F. Yeo. 1985. The families of the monocotyledons. Springer-Verlag, Berlin.Google Scholar
  27. Davis, G. L. 1966. Systematic embryology of the angiosperms. John Wiley, New York.Google Scholar
  28. Eberhard, W. G. 1980. Evolutionary consequences of intracellular organelle competition. Quart. Rev. Biol.55: 231–249.PubMedGoogle Scholar
  29. Ekdahl, I. 1941. Die Entwicklung von Embryosack und Embryo beiUlmus glabra Huds. Svensk Bot. Tidskr.35: 143–156.Google Scholar
  30. Erdtman, G. 1966. Pollen morphology and plant taxonomy. Vol. 1 (corrected reprint). Hafher, New York.Google Scholar
  31. Fagerlind, F. 1938. Wo kommen tetrasporische durch drei Teilungsschritte vollentwickelte Embryosäcke unter den Angiospermen vor? Bot. Notiser1938: 461–498.Google Scholar
  32. —. 1939a. Kritische und revidierende Untersuchungen über das Vorkommen desAdoxa (“Lilium”) Typs. Acta Horti Berg.13: 1–49.Google Scholar
  33. —. 1939b. Drei Beispiele des Fritillaria-Typs. Svensk Bot. Tidskr.33: 188–204.Google Scholar
  34. —. 1939c. Die Entwicklung des Embryosäckes beiPeperomia pellucida. Ark. f. Bot.29A(17): 1–15.Google Scholar
  35. —. 1944. Die tetrasporische Angiospermen-Embryosack und dessen Bedeutung für das Verständnis der Entwicklungsmechanik und Phylogenie des Embryosacks. Ark. f. Bot.31A(11): 1–71.Google Scholar
  36. Fisher, G. C. 1914. Seed development in the genusPeperomia. Bull. Torrey Bot. Club41: 137–156, 221–241.Google Scholar
  37. Grallert, B. &M. Sipiczki. 1989. Initiation of the second meiotic division inSchizosaccharomyces pombe shares common functions with that of mitosis. Curr. Genet.15: 231–233.Google Scholar
  38. Haig, D. 1986. Conflicts among megaspores. J. Theor. Biol.123: 471–480.Google Scholar
  39. —. 1987. Kin conflict in seed plants. Trends Ecol. Evol.2: 337–340.Google Scholar
  40. — &M. Westoby. 1989. Parent-specific gene expression and the triploid endosperm. Amer. Naturalist134: 147–155.Google Scholar
  41. Haque, A. 1951. The embryo sac ofErythronium americanum. Bot. Gaz.112: 495–500.Google Scholar
  42. Harling, G. 1950. Embryological studies in the Compositae. I. Anthemideae—Anthemidinae. Acta Horti Berg.15: 135–168.Google Scholar
  43. —. 1951a. Embryological studies in the Compositae. II. Anthemideae—Chrysantheminae. Acta Horti Berg.16: 1–56.Google Scholar
  44. —. 1951b. Embryological studies in the Compositae. III. Astereae. Acta Horti Berg.16: 73–120.Google Scholar
  45. Haupt, A. W. 1934. Ovule and embryo sac ofPlumbago capensis. Bot. Gaz.95: 649–659.Google Scholar
  46. Herr, J. M., Jr. 1984. Embryology and taxonomy. Pages 645–696in B. M. Johri (ed.), Embryology of angiosperms. Springer-Verlag, Berlin.Google Scholar
  47. Hjelmqvist, H. &F. Grazi. 1965. Studies on variation in embryo sac development. Bot. Notiser118: 329–360.Google Scholar
  48. Howe, T. D. 1975. The female gametophyte of three species ofGrindelia and ofPrionopsis ciliata (Compositae). Amer. J. Bot.62: 273–279.Google Scholar
  49. Johnson, D. S. 1900. On the endosperm and embryo ofPeperomia pellucida. Bot. Gaz.30: 1–11.Google Scholar
  50. —. 1902. On the development of certain Piperaceae. Bot. Gaz.34: 321–340.Google Scholar
  51. —. 1910. Studies in the development of the Piperaceae I. The suppression and extension of sporogenous tissue in the flower ofPiper betel L. var.monoicum. C. DC. J. Exp. Zool. 9:715–749.Google Scholar
  52. —. 1914. Studies of the development of the Piperaceae II. The structure and seeddevelopment ofPeperomia hispidula. Amer. J. Bot.1: 323–339, 357–397.Google Scholar
  53. Johnston, S. A., T. P. M. den Nijs, S. J. Peloquin &R. E. Hanneman, Jr. 1980. The significance of genic balance to endosperm development in interspecific crosses. Theor. Appl. Genet.57: 5–9.Google Scholar
  54. Johri, B. M. 1935a. Studies in the family Alismaceae. I.Limnophyton obtusifolium. Miq. J. Indian Bot. Soc.14: 49–66.Google Scholar
  55. —. 1935b. Studies in the family Alismaceae. II.Sagittaria sagittifolia L. Proc. Indian Acad. Sci. B.1: 340–348.Google Scholar
  56. —. 1935c. Studies in the family Alismaceae. III.Sagittaria guayanensis H.B.K. andS. latifolia Willd. Proc. Indian Acad. Sci. B.2: 33–48.Google Scholar
  57. —. 1936a. The life-history ofButomopsis lanceolata Kunth. Proc. Indian Acad. Sci. B. 4: 139–162.Google Scholar
  58. —. 1936b. Studies in the family Alismaceae. IV.Alisma plantago L.;Alisma plantagoaquatica L. andSagittaria graminea Mich. Proc. Indian Acad. Sci. B.4: 128–138.Google Scholar
  59. —. 1938a. The embryo sac ofHydrocleis nymphoides Buchen. Beih. Bot. Ztbl.48A: 165–172.Google Scholar
  60. —. 1938b. The embryo sac ofLimnocharis emarginata L. New Phytol.37: 279–285.Google Scholar
  61. — &R. N. Kapil. 1953. Contribution to the morphology and life history ofAcalypha indica L. Phytomorphology3: 137–151.Google Scholar
  62. — &D. Kak. 1954. The embryology ofTamarix Linn. Phytomorphology4: 230–247.Google Scholar
  63. Kanta, K. 1962. Morphology and embryology ofPiper nigrum L. Phytomorphology12: 207–221.Google Scholar
  64. Kapil, R. N. 1960. Embryology ofAcalypha Linn. Phytomorphology10: 174–184.Google Scholar
  65. — &A. K. Bhatnagar. 1981. Ultrastructure and biology of female gametophyte in flowering plants. Int. Rev. Cytol.70: 291–341.Google Scholar
  66. Kennell, J. C. &H. T. Horner. 1985. Influence of the soybean male-sterile gene (ms 1) on the development of the female gametophyte. Canad. J. Genet. Cytol.27: 200–209.Google Scholar
  67. Kermicle, J. L. 1971. Pleiotropic effects on seed development of the indeterminate gametophyte gene in maize. Amer. J. Bot.58: 1–7.Google Scholar
  68. Lin, B-Y. 1978. Structural modifications of the female gametophyte associated with the indeterminate gametophyte (ig) mutant in maize. Canad. J. Genet. Cytol.20: 249–257.Google Scholar
  69. —. 1981. Megagametogenetic alterations associated with the indeterminate gametophyte mutation in maize. Rev. Brasil. Biol.41: 557–563.Google Scholar
  70. —. 1984. Ploidy barrier to endosperm development in maize. Genetics107: 103–115.PubMedGoogle Scholar
  71. Maheshwari, P. 1946a. The Fritillaria type of embryo sac: A critical review. J. Indian Bot. Soc. (M. O. P. Iyengar Commem. Vol.): 101–119.Google Scholar
  72. —. 1946b. The Adoxa type of embryo sac: A critical review. Lloydia9: 73–113.Google Scholar
  73. —. 1950. An introduction to the embryology of angiosperms. McGraw-Hill, New York.Google Scholar
  74. — &B. M. Johri. 1941. The embryo-sac ofAcalypha indica L. Beih. Bot. Ztbl.16: 125–136.Google Scholar
  75. — &B. Singh. 1943. Studies in the family Alismaceae. V. The embryology ofMachaerocarpus californicus (Torr.) Small. Proc. Indian Acad. Sci. B.9: 311–322.Google Scholar
  76. Maheshwari, S. C. 1955. The occurrence of bisporic embryo sacs in angiosperms—A critical review. Phytomorphology5: 67–99.Google Scholar
  77. Martinoli, G. O. 1939. Contributo all’embriologia delle Asteraceae. N. G. Bot. Ital.46: 259–298.Google Scholar
  78. Mathur, K. &R. Khan. 1941. The development of the embryo sac inVogelia indica. Lamk. Proc. Indian Acad. Sci. B.13: 360–368.Google Scholar
  79. Mathur, N. 1956. The embryology ofLimnanthes. Phytomorphology6: 41–50.Google Scholar
  80. Mauritzon, J. 1936. Zur Embryologie der Berberidaceen. Medd. Göteborgs Bot. Trädgård11: 1–17.Google Scholar
  81. Modilewski, J. 1908. Zur Embryobildung vonGunnera chilensis. Ber. Dtsch. Bot. Ges.26: 550–556.Google Scholar
  82. Mukkada, A. J. 1964. An addition to the bisporic embryo sacs—TheDicraea type. New Phytol.63: 289–292.Google Scholar
  83. Nagendran, C. R. 1974. Is the embryo sac of Podostemaceae bisporic? Current Sci.43: 259–261.Google Scholar
  84. —,G. D. Arekal &K. Subramanyam. 1977. Embryo sac studies in three Indian species ofPolypleurum (Podostemaceae). Plant Syst. Evol.128: 215–226.Google Scholar
  85. Newcomb, W. 1973. The development of the embryo sac of sunflowerHelianthus annuus before fertilization. Canad. J. Bot.51: 863–878.Google Scholar
  86. Nikiticheva, Z. I., M. S. Yakovlev &T. A. Plyushch. 1981. [The development of the ovule, embryo sac and endosperm in the species ofPeperomia]. Bot. Zhur.66: 1388–1397 (in Russian).Google Scholar
  87. Nogler, G. A. 1984. Gametophytic apomixis. Pages 475–518in B. M. Johri (ed.), Embryology of angiosperms. Springer-Verlag, Berlin.Google Scholar
  88. Palser, B. F. 1975. The bases of angiosperm phylogeny: Embryology. Ann. Missouri Bot. Gard.62: 621–646.Google Scholar
  89. Philipson, W. R. 1987. The treatment of isolated genera. Bot. J. Linn. Soc.95: 19–25.Google Scholar
  90. Queller, D. C. 1983. Kin selection and conflict in seed maturation. J. Theor. Biol.100: 153–172.Google Scholar
  91. —. 1984. Models of kin selection on seed provisioning. Heredity53: 151–165.Google Scholar
  92. Rao, P. N. 1970. Euphorbiaceae. Bull. Indian Nat. Sci. Acad.41: 136–141.Google Scholar
  93. Romanov, I. D. 1938. Eine neue Form des Embryosackes von Adoxa-typus beiTulipa tetraphylla undT. ostrovskiana. Compt. Rend. (Doklady) Acad. des Sci. U.R.S.S.19:113–115.Google Scholar
  94. —. 1939. Two new forms of embryo-sack in the genusTulipa. Compt. Rend. (Doklady) Acad. des Sci. U.R.S.S.22: 139–141.Google Scholar
  95. —. 1959. The embryo sac and pollen morphology inTulipa (abstract). Proc. 9th Inter. Congr. Bot.23:331–332.Google Scholar
  96. Roper, R. B. 1952. The embryo sac ofButomus umbellatus L. Phytomorphology2: 61–74.Google Scholar
  97. Russell, S. D. 1979. Fine structure of megagametophyte devleopment inZea mays. Canad. J. Bot.57: 1093–1110.Google Scholar
  98. —. 1982. Fertilization inPlumbago zeylanica: Entry and discharge of the pollen tube in the embryo sac. Canad. J. Bot.60: 2219–2230.Google Scholar
  99. — &D. D. Cass. 1988. Fertilization inPlumbagella micrantha. Amer. J. Bot.75: 778–781.Google Scholar
  100. Rutishauser, A. 1935. Entwicklungsgeschichtliche und zytologische Untersuchungen anKorthalsella dacrydii (Ridl.) Dans. Ber. Schweiz. Bot. Ges.44: 389–436.Google Scholar
  101. —. 1969. Embryologie und Fortpflanzungsbiologie der Angiospermen. Springer-Verlag, Wien.Google Scholar
  102. Samuels, J. A. 1912. Etudes sur le développement du sac embryonnaire et sur la fécondation duGunnera macrophylla Bl. Arch. f. Zellf.8: 52–120.Google Scholar
  103. Satina, S. &A. F. Blakeslee. 1935. Cytological effects of a gene inDatura which causes dyad formation in sporogenesis. Bot. Gaz.96: 521–532.Google Scholar
  104. Shattuck, C. H. 1905. A morphological study ofUlmus americana. Bot. Gaz.40: 209–223.Google Scholar
  105. Schnarf, K. 1929. Embryologie der Angiospermen, Handbuch der Pflanzenanatomie Bd. X/2. Borntraeger, Berlin.Google Scholar
  106. Smith, F. H. 1955. Megagametophyte development in five species ofErythronium. Amer. J. Bot.42:213–224.Google Scholar
  107. Smith, R. W. 1911. The tetranucleate embryo sac ofClintonia. Bot. Gaz.52: 209–216.Google Scholar
  108. Stephens, E. L. 1909. The embryo-sac and embryo of certain Penaeaceae. Ann. Bot.23: 363–378.Google Scholar
  109. Subba Rao, A. M. 1940. Studies in the Malpighiaceae. I. Embryo sac development and embryogeny in the generaHiptage, Banisteria andStigmatophyllum. J. Indian Bot. Soc.18: 145–156.Google Scholar
  110. Subramanyam, K. 1967. Some aspects of the embryology ofSedum chrysanthum (Boissier) Raymond-Hamlet with a discussion of its systematic position. Phytomorphology17:240–247.Google Scholar
  111. Thathachar, T. 1952. Morphological studies in the Euphorbiaceae: I.Acalypha lanceolata Willd. Phytomorphology2: 197–201.Google Scholar
  112. Tobe, H. &P. H. Raven. 1984. The embryology and relationships of Penaeaceae (Myrtales). Plant Syst. Evol.146: 181–195.Google Scholar
  113. Walker, R. I. 1950. Megasporogenesis and development of megagametophyte inUlmus. Amer. J. Bot.37: 47–52.Google Scholar
  114. Westoby, M. &B. Rice. 1982. Evolution of the seed plants and inclusive fitness of plant tissues. Evolution36: 713–724.Google Scholar
  115. Willemse, M. T. M. &J. L. van Went. 1984. The female gametophyte. Pages 159–196in B. M. Johri (ed.), Embryology of angiosperms. Springer-Verlag, Berlin.Google Scholar
  116. Willson, M. F. &N. Burley. 1983. Mate choice in plants. Princeton University Press, Princeton.Google Scholar
  117. Wright, S. 1969. Evolution and the genetics of populations. Vol. 2. University of Chicago Press, Chicago.Google Scholar

Copyright information

© The New York Botanical Garden 1990

Authors and Affiliations

  • David Haig
    • 1
  1. 1.School of Biological SciencesMacquarie UniversityNew South WalesAustralia

Personalised recommendations