The Botanical Review

, Volume 53, Issue 3, pp 301–334 | Cite as

Population ecology of halophyte seeds

  • Irwin A. Ungar


Some aspects of the population biology of halophytes are considered in this review. Persistent seed banks have been reported for a number of inland- and coastal-salt marsh plant communities. Seeds of perennial grasses are often under-represented, while annuals and some perennial forbs may be over-represented in the seed bank. The persistent seed bank of annual halophytes appears adaptive, and provides multiple seed germination opportunities which may prevent local extinction when environmental stress increases. Somatic seed polymorphism provides a mechanism by which parent plants can respond to changing environments by partitioning their resources into reproductive units which have distinct germination responses. Parental effects may influence either seed morphology and/or physiological requirements of seeds when they are exposed to environmental stress. A prolonged germination period can provide plant populations with numerous opportunities to establish seedling cohorts. Early cohorts will have a selective advantage under moderate conditions because mortality will be low and plants will survive until maturity. However, fluctuations in salinity levels and tidal activity can cause high mortality in early cohorts in salt marsh habitats, providing later cohorts with an opportunity for establishment. Resource allocation to reproductive structures is related to plant size, which itself can be affected by both abiotic and biotic factors. Larger plants were found to produce more seeds than smaller plants in a population, but the mean seed weight was greater in small plants.


Salt Marsh Seed Bank Botanical Review Seed Size Large Seed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Cette revue examine quelques aspects de la biologie des peuplements des halophytes. On a observé qu’il y a des réserves permanentes de graines pour certaines populations de plantes de marais salants, tant sur le littoral qu’ à l’intérieur des terres. Les réserves de graines tendent à présenter insuffisamment de graines de plantes vivaces et trop d’annuelles et de certaines herbacées vivaces. La reserve permanente des halophytes annuelles semble être adaptive, et offre aux graines de multiples occasions de germination, ce qui peut empêcher l’extinction locale quand le stress de l’environnement augmente. Le polymorphisme somatique de la graine offre un mécanisme par lequel les plantes-parents peuvent réagir à des environnements variables en subdivisant leurs ressources en des unités reproductrices qui ont des réactions de germination distinctes. Les plants précoces auront un avantage sélectif dans des conditions modérées parce que la mortalité sera faible et que les plantes survivront jusqu’à la maturité. Une période de germination prolongée peut fournir aux populations de plantes de nombreuses occasions d’établir des ordres de plants. Cependant les fluctuations des niveaux de la salinité et de l’activité des marées peut produire une forte mortalité parmi les plants précoces dans ces marais salant, ce qui donne aux plants suivant l’occasion de bien s’établir. Combien la plante possède de structures reproductives est lié à sa taille, qui, elle-même peut être affectée et par les facteurs abiotiques et par les facteurs biotiques. On a constaté que les plantes plus grosses produisent plus de graines que les plantes plus petites dans une population, mais que le poids moyen des graines est plus élevé dans les plantes plus petites.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Baker, G. A. &D. J. O’Dowd. 1982. Effects of parent plant density on the production of achene types in the annualHypochoeris glabra. J. Ecol.70: 201–215.Google Scholar
  2. Baker, H. G. 1974. The evolution of weeds. Annual Rev. Ecol. Syst.5: 1–24.Google Scholar
  3. Baskin, J. M. &C. C. Baskin. 1972. Influence of germination date on survival and seed production in a natural population ofLeavenworthia stylosa. Amer. Midl. Naturalist88: 318–323.Google Scholar
  4. —. 1976. Germination dimorphism inHeterotheca subaxillaris var.subaxillaris. Bull. Torrey Bot. Club103: 201–206.Google Scholar
  5. — 1983. Germination ecology ofVeronica arvensis. J. Ecol.71: 57–68.Google Scholar
  6. — 1984. Role of temperature in regulating timing of germination in soil seed reserves ofLamium purpureum L. Weed Res.24: 341–349.Google Scholar
  7. — 1985. The annual dormancy cycle in buried weed seeds: A continuum. BioScience35: 492–498.Google Scholar
  8. Beadle, N. C. W. 1952. Studies in halophytes. I. The germination of the seed and establishment of the seedlings of five species ofAtriplex in Australia. Ecology33: 49–62.Google Scholar
  9. Beeftink, W. G. 1985. Population dynamics of annualSalicornia species in the tidal salt marshes of the Oostershelde, The Netherlands. Vegetatio61: 127–136.Google Scholar
  10. Berger, A. 1985. Seed dimorphism and germination behavior inSalicornia patula. Vegetatio61: 137–143.Google Scholar
  11. Best, K. F., J. D. Banting &G. G. Bowes. 1978. The biology of Canadian weeds. 31.Hordeum jubatum L. Canad. J. Pl. Sci.58: 699–708.Google Scholar
  12. Bewley, J. D. & M. Black. 1982. Physiology and biochemistry of seeds in relation to germination. Springer-Verlag, Berlin. 375 pp.Google Scholar
  13. Black, J. N. 1958. Competition between plants of different initial seed sizes in swards of subterranean clover (Trifolium subterraneum) with particular reference to leaf area and the light microclimate. Austral. J. Agric. Res.9: 299–318.Google Scholar
  14. Braun-Blaunquet, J. 1932. Plant sociology. McGraw-Hill Book Co., New York. 439 pp.Google Scholar
  15. Brown, N. A. C. &J. J. Mitchell. 1983. Germination of the polymorphic fruits ofBidens bipinnata. S. African J. Bot.3: 55–58.Google Scholar
  16. Cavers, P. B. 1983. Seed demography. Canad. J. Bot.61: 3578–3590.Google Scholar
  17. — &J. L. Harper. 1967. The comparative biology of closely related species living in the same area. IX.Rumex. The nature of adaptation to the seashore habitat. J. Ecol.55: 73–82.Google Scholar
  18. — &M. G. Steel. 1984. Patterns of change in seed weight over time on individual plants. Amer. Naturalist124: 324–335.Google Scholar
  19. Cheplick, G. P. &J. A. Quinn. 1982.Amphicarpum purshii and the “pessimistic strategy” in amphicarpic annuals with subterranean fruit. Oecologia52: 327–332.Google Scholar
  20. Cideciyan, G. P. &A. J. Malloch. 1982. Effects of seed size on the germination, growth and competitive ability ofRumex crispus andRumex obtusifolius. J. Ecol.70: 227–232.Google Scholar
  21. Cook, R. E. 1975. The photoinductive control of seed weight inChenopodium rubrum L. Amer. J. Bot.62: 427–431.Google Scholar
  22. —. 1976. Photoperiod and the determination of potential seed number inChenopodium rubrum L. Ann. Bot.40: 1085–1099.Google Scholar
  23. —. 1979. Pattern of juvenile mortality and recruitment in plants. Pages 207–231in O. T. Solbrig, S. Jain, G. B. Johnson & P. H. Raven (eds.), Topics in plant population biology. Columbia University Press, New York. 589 pp.Google Scholar
  24. — 1980. Germination and size dependent mortality inViola blanda. Oecologia47: 115–117.Google Scholar
  25. Cresswell, E. G. &J. P. Grime. 1981. Induction of a light requirement during seed development and its ecological consequences. Nature291: 583–585.Google Scholar
  26. Datta, S. C., M. Evenari &Y. Gutterman. 1970. The heteroblasty ofAegilops ovata L. Israel J. Bot.19: 463–483.Google Scholar
  27. Davy, A. J. &H. Smith 1985. Population differentiation in the life-history characteristics of salt-marsh annuals. Vegetatio61: 117–125.Google Scholar
  28. Dodd, J. D. &R. T. Coupland 1966. Vegetation of saline areas in Saskatchewan. Ecology47: 958–968.Google Scholar
  29. Drysdale, F. R. 1973. Variation in seed size inAtriplex patula var.hastata (L.) Gray. Rhodora75: 106–110.Google Scholar
  30. Fatih, H. A. &F. A. Bazzaz 1979. The biology ofAmbrosia trifida L. II. Germination, emergence, growth and survival. New Phytol.83: 817–827.Google Scholar
  31. Flint, S. D. &I. G. Palmblad. 1978. Germination dimorphism and developmental flexibility in the ruderal weedHeterotheca grandiflora. Oecologia36: 33–43.Google Scholar
  32. Forsyth, C. &N. A. C. Brown 1982. Germination of the dimorphic fruits ofBidens pilosa L. New Phytol.90: 151–164.Google Scholar
  33. Frankton, C. &I. J. Bassett 1968. The genusAtriplex (Chenopodiaceae) in Canada. I. Three introduced species:A. heterosperma, A. oblongifolia, andA. hortensis. Canad. J. Bot.46: 1309–1313.Google Scholar
  34. —. 1970. The genusAtriplex (Chenopodiaceae) in Canada. II. Four native western annuals:A. argentea, A. truncata, A. powellii, andA. dioica.. Canad. J. Bot.48: 981–989.Google Scholar
  35. Gronzis, M., A. Berger &G. Heim 1976. Polymorphisme et germination des graines chez espèces annuelles du genreSalicornia. Acta Oecol., Oecol. Pl.11: 41–52.Google Scholar
  36. Gutterman, Y. 1973. Differences in the progeny due to daylength and hormone treatment of the mother plant. Pages 59–80in W. Heydecker (ed.), Seed ecology. Pennsylvania State University Press, University Park. 578 pp.Google Scholar
  37. — 1980/1981a. Annual rhythm and position effect in the germinability ofMesembryanthemum nodiflorum. Israel J. Bot.29: 93–97.Google Scholar
  38. — 1980/1981b. Influences on seed germinability: Phenotypic maternal effects during seed maturation. Israel J. Bot.29: 105–117.Google Scholar
  39. Hall, H. M. &F. E. Clements. 1923. The phylogenetic method in taxonomy: North American species ofArtemisia, Chrysothamnus, andAtriplex. Publication no. 326. Carnegie Institution of Washington, Washington, D.C. 355 pp.Google Scholar
  40. Harper, J. L. 1977. Population biology of plants. Academic Press, New York. 892 pp.Google Scholar
  41. —,P. H. Lovell &K. G. Moore. 1970. The shapes and sizes of seeds. Annual Rev. Ecol. Syst.1: 327–356.Google Scholar
  42. Hartman, J. M. 1984. The role of wrack disturbance in the vegetation of a New England salt marsh. Doctoral Dissertation. University of Connecticut, Storrs, Connecticut. 130 pp.Google Scholar
  43. Hendrix, S. D. 1984. Variation in seed weight and its effects on germination inPastinaca sativa L. (Umbelliferae). Amer. J. Bot.71: 795–802.Google Scholar
  44. Hopkins, D. R. &V. T. Parker. 1984. A study of the seed bank of a salt marsh in northern San Francisco Bay. Amer. J. Bot.71: 348–355.Google Scholar
  45. Huiskes, A. H. L. 1979. Seedling survival ofHalimione portulacoides. Pages 45–46in Delta Institute Hydrobiological Research, Progress Report 1979. Yerseke, Netherlands. 79 pp.Google Scholar
  46. —, L. J.van Soelin &M. M. Markusse. 1985. Field studies on the variability of populations ofAster tripolium L. in relation to salt-marsh zonation. Vegetatio61: 163–169.Google Scholar
  47. Jefferies, R. L. &A. J. Davy 1979. Ecological processes in coastal environments. Blackwell Scientific Publications, Oxford, England. 684 pp.Google Scholar
  48. —— &J. Rudmick. 1981. Population biology of the salt-marsh annualSalicornia europaea agg. J. Ecology69: 17–31.Google Scholar
  49. —,A. Jensen &D. Bazely 1983. The biology of the annualSalicornia europaea agg., at the limits of its range in Hudson Bay. Canad. J. Bot.61: 762–773.Google Scholar
  50. Jerling, L. 1981. Effects of microtopography on the summer survival ofPlantago maritima seedlings. Holarctic Ecol.4: 120–126.Google Scholar
  51. —. 1984a. Composition and viability of the seed bank along a successional gradient on a Baltic sea shore meadow. Holarctic Ecol.6: 150–156.Google Scholar
  52. —. 1984b. The impact of some environmental factors on the establishment ofPlantago maritima seedlings and juveniles along a distributional gradient. Holarctic Ecol.7: 271–279.Google Scholar
  53. —. 1985. Population dynamics ofPlantago maritima along a distributional gradient on a Baltic seashore meadow. Vegetatio61: 155–161.Google Scholar
  54. — &M. Anderson 1982. Effects of grazing by cattle on the reproduction ofPlantago maritima. Holarctic Ecol.5: 405–411.Google Scholar
  55. —, &L.-E. Liljelund 1984. Dynamics ofPlantago maritima along a distributional gradient: A demographic study. Holarctic Ecol.7: 280–288.Google Scholar
  56. Josselyn, M. N. &R. J. Perez. 1981. Sediment characteristics and vegetation colonization. Pages 7–34in T. Niesen & M. Josselyn (eds.), The Hayward regional shoreline marsh restoration: Biological succession during the first year following dike removal. Technical Report 1. Tiburon Center for Environmental Studies, Tiburon, California. 185 pp.Google Scholar
  57. Karssen, C. M. 1970. The light promoted germination of the seeds ofChenopodium album L.: III. Effect of the photoperiod during growth and development of the plants on the dormancy of the produced seeds. Acta Bot. Neerl.19: 81–94.Google Scholar
  58. —. 1980/1981a. Environmental conditions and endogenous mechanisms involved in secondary dormancy of seeds. Israel J. Bot.29: 45–64.Google Scholar
  59. —. 1980/1981b. Pattern of change in dormancy during burial of seeds in soil. Israel J. Bot.29: 65–73.Google Scholar
  60. —. 1982. Seasonal pattern of dormancy in weed seeds. Pages 243–270in A. A. Khan (ed.), The physiology and biochemistry of seed development, dormancy and germination. Elsevier Biomédical Press, Amsterdam, The Netherlands. 547 pp.Google Scholar
  61. Keddy, P. A. &A. A. Reznicek. 1982. The role of seed banks in the persistence of Ontario’s coastal plain flora. Amer. J. Bot.69: 13–22.Google Scholar
  62. Khan, M. A. &I. A. Ungar 1984a. Seed polymorphism and germination responses to salinity stress inAtriplex triangularis. Willd. Bot. Gaz.145: 487–494.Google Scholar
  63. — &I. A. Ungar 1984b. The effect of salinity and temperature on the germination of polymorphic seeds and growth ofAtriplex triangularis Willd. Amer. J. Bot.71: 481–489.Google Scholar
  64. — &I. A. Ungar. 1985. The role of hormones in regulating the germination of polymorphic seeds and early seedling growth ofAtriplex triangularis under saline conditions. Physiol. Pl.63: 109–113.Google Scholar
  65. Leck, M. A. &K. J. Graveline 1979. The seed bank of a freshwater tidal marsh. Amer. J. Bot.66: 1006–1015.Google Scholar
  66. Lieffers, V. J. &J. M. Shay 1981. The effects of water level on the growth and reproduction ofScirpus maritimus var.paludosus. Canad. J. Bot.59: 118–121.Google Scholar
  67. Lieffers, V. J. &J. M. Shay. 1982. Seasonal growth and standing crop ofScirpus maritimus var.paludosus in Saskatchewan. Canad. J. Bot.60: 117–125.Google Scholar
  68. Livingston, R. B. &M. Allessio 1968. Buried viable seed in successional and forest stands, Harvard Forest, Massachusetts. Bull. Torrey Bot. Club95: 58–69.Google Scholar
  69. Major, J. &W. T. Pyott 1966. Burial of viable seeds in California bunchgrass sites and their bearing on the definition of a flora. Vegetatio13: 253–282.Google Scholar
  70. Marks, T. C. &A. J. Truscott 1985. Variation in seed production and germination ofSpartina anglica within a zoned saltmarsh. J. Ecol.73: 695–705.Google Scholar
  71. Maun, M. A. &P. B. Cavers 1971. Seed production and dormancy inRumex crispus. II. The effects of removal of various proportions of flowers at anthesis. Canad. J. Bot.49: 1841–1848.Google Scholar
  72. McGraw, D. C. &I. A. Ungar 1981. Growth and survival of the halophyteSalicornia europaea under saline field conditions. Ohio J. Sci.81: 109–113.Google Scholar
  73. McMahon, K. &I. A. Ungar 1978. Phenology, distribution and survival ofAtriplex triangularis Willd. in an Ohio salt pan. Amer. Midl. Naturalist100: 1–14.Google Scholar
  74. Milton, W. E. J. 1939. Occurrence of buried viable seeds in soils at different elevations on a salt marsh. J. Ecol.27: 149–159.Google Scholar
  75. Naylor, R. E. L. 1980. Effects of seed size and emergence time on subsequent growth of perennial ryegrass. New Phytol.84: 313–318.Google Scholar
  76. Nicholson, A. &P. A. Keddy 1983. The depth profile of a shoreline seed bank in Matchedash Lake, Ontario. Canad. J. Bot.61: 3293–3296.Google Scholar
  77. Okusanya, O. T. &I. A. Ungar 1983. The effects of time of seed production on the germination response ofSpergularia marina. Physiol. Pl.59: 335–342.Google Scholar
  78. Olmsted, N. &J. D. Curtis 1947. Seeds of the forest floor. Ecology28: 49–52.Google Scholar
  79. Oosting, H. J. &M. E. Humphreys 1940. Buried viable seeds in a successional series of old field and forest soils. Bull. Torrey Bot. Club67: 253–273.Google Scholar
  80. Osmond, C. B., O. Bjorkman &D. J. Anderson 1980. Physiological processes in plant ecology. Springer-Verlag, Berlin, West Germany. 468 pp.Google Scholar
  81. Paalvast, P. 1978. Population dynamics and chromosome counts inSalicornia. Pages 178–183in Delta Institute for Hydrobiological Research. Yerseke, Netherlands. 232 pp.Google Scholar
  82. Parker, V. T. &M. A. Leck. 1985. Relationships of seed banks to plant distribution patterns in a freshwater tidal wetland. Amer. J. Bot.72: 161–174.Google Scholar
  83. Philipupillai, J. 1982. Population biology ofSalicornia europaea in an inland salt marsh. Master of Science Thesis. Ohio University, Athens, Ohio.Google Scholar
  84. — &I. A. Ungar. 1984. The effect of seed dimorphism on the germination and survival ofSalicornia europaea L. populations. Amer. J. Bot.71: 542–549.Google Scholar
  85. Riehl, T. E. &I. A. Ungar 1982. Growth and ion accumulation inSalicornia europaea under saline field conditions. Oecologia54: 193–199.Google Scholar
  86. — &I. A. Ungar. 1983. Growth, water potential and ion accumulation in the inland halophyteAtriplex triangularis under saline field conditions. Acta Oecol., Oecol. Pl.4(18): 27–39.Google Scholar
  87. Roach, D. A. 1983. Buried seed and standing vegetation in two adjacent tundra habitats, northern Alaska. Oecologia60: 359–364.Google Scholar
  88. Roberts, H. A. &J. E. Neilson 1980. Seed survival and periodicity of seedling emergence in some species ofAtriplex, Chenopodium, Polygonum, andRumex. Ann. Appl. Biol.94: 111–120.Google Scholar
  89. Runge, F. 1972. Dauerquadratbeobachtungen bei salzwiesen-Assoziationen. Pages 419–425in R. Tuxen (ed.), Grundfragen und Methoden in der Pflanzensoziologie. Junk, The Hague, Netherlands. 533 pp.Google Scholar
  90. Silvertown, J. W. 1984. Phenotypic variety in seed germination behavior: The ontogeny and evolution of somatic polymorphism in seeds. Amer. Naturalist124: 1–16.Google Scholar
  91. Smith, L. M. &J. A. Kadlec 1983. Seed banks and their role during drawdown of a North American marsh. J. Appl. Ecol.20: 673–684.Google Scholar
  92. Sorenson, A. E. 1978. Somatic polymorphism and seed dispersal. Nature276: 174–176.Google Scholar
  93. Stanton, M. L. 1984. Seed variation in wild radish: Effect of seed size on the components of seedling and adult fitness. Ecology65: 1105–1112.Google Scholar
  94. Taschereau, P. M. 1972. Taxonomy and distribution ofAtriplex species in Nova Scotia. Canad. J. Bot.50: 1571–1594.Google Scholar
  95. Templeton, A. R. &D. A. Levin 1979. Evolutionary consequences of seed pools. Amer. Naturalist114: 232–249.Google Scholar
  96. Thompson, P. A. 1981. Variations in seed size within populationsof Silene dioica (L.) Clairv. in relation to habitat. Ann. Bot.47: 623–634.Google Scholar
  97. Ungar, I. A. 1970. Species-soil relationships on sulfate dominated soils in South Dakota. Amer. Midl. Naturalist83: 343–357.Google Scholar
  98. —. 1971.Atriplex patula var.hastata seed dimorphism. Rhodora73: 548–551.Google Scholar
  99. —. 1972. The vegetation of inland saline marshes of North America, north of Mexico. Pages 397–411in R. Tuxen (ed.), Grundfragen und Methoden in der Pflanzensoziologie. Junk, The Hague, Netherlands. 533 pp.Google Scholar
  100. —. 1974. Population dynamics of inland halophytic communities. Bull. Soc. Bot. Fr.121: 287–292.Google Scholar
  101. —. 1978. Halophyte seed germination. Bot. Rev.44: 233–264.Google Scholar
  102. —. 1979. Seed dimorphism inSalicornia europaea L. Bot. Gaz.140: 102–108.Google Scholar
  103. —. 1982. Germination ecology of halophytes. Pages 143–154in D. N. Sen & K. Rajpurohit (eds.), Contributions to the ecology of halophytes. Junk, The Hague, Netherlands. 272 pp.Google Scholar
  104. —. 1984a. Alleviation of seed dormancy inSpergularia marina. Bot. Gaz.145: 33–36.Google Scholar
  105. —. 1984b. Autecological studies withAtriplex triangularis. Pages 40–52in A. R. Tiedemann, E. D. McArthur, H. C. Stutz, K. R. Stevens & K. L. Johnson (eds.), Symposium on the biology ofAtriplex and related chenopods. General Technical Report INT-172. U.S.D.A. Forest Service, Provo, Utah. 309 pp.Google Scholar
  106. —,D. K. Benner &D. C. McGraw. 1979. The distribution and growth ofSalicorniaeuropaea on an inland salt pan. Ecology60: 329–336.Google Scholar
  107. — &T. E. Riehl. 1980. The effect of seed reserves on species composition in zonal halophyte communities. Bot. Gaz.141: 447–452.Google Scholar
  108. van der Valk, A. G. 1981. Succession in wetlands: A Gleasonian approach. Ecology62: 688–696.Google Scholar
  109. van der Valk, A. G. &C. B. Davis. 1976. The seed banks of prairie glacial marshes. Canad. J. Bot.54: 1832–1838.Google Scholar
  110. —. 1978. The role of seed banks in the vegetation dynamics of prairie glacial marshes. Ecology59: 322–335.Google Scholar
  111. Waisel, Y. 1972. Biology of halophytes. Academic Press, New York. 395 pp.Google Scholar
  112. Wandelberger, G. 1950. Zur Soziologie der kontinentalen Halophytenvegetation Mitteleuropas. Akad. Wiss. Wien Math.-Naturwiss. Kl., Denkschr.108: 1–179.Google Scholar
  113. Weaver, J. E. 1918. The quadrat method in teaching ecology. Plant World21: 267–283.Google Scholar
  114. Wertis, B. &I. A. Ungar 1986. Seed demography and seedling survival in a population ofAtriplex triangularis Willd. Amer. Midl. Naturalist116: 152–162.Google Scholar
  115. Westoby, M. 1981. How diversified seed germination behavior is selected. Amer. Naturalist118: 862–865.Google Scholar
  116. Whipple, S. S. 1978. The relationship of buried germinating seeds to vegetation of an old-growth Colorado subalpine forest. Canad. J. Bot.56: 1505–1509.Google Scholar
  117. Wiehe, P. O. 1935. A quantitative study of the influence of tide upon populations ofSalicornia europaea. J. Ecol.23: 323–333.Google Scholar
  118. Wilkon-Michalska, J. 1985. Structure and dynamics of the inland populations ofSalicornia patula. Vegetatio61: 145–154.Google Scholar
  119. Woodell, S. R. J. 1985. Salinity and seed germination patterns in coastal plants. Vegetatio61: 223–230.Google Scholar
  120. Yokoyama, S. &B. A. Schaal. 1985. A note on multiple-niche polymorphisms in plant populations. Amer. Naturalist125: 158–163.Google Scholar
  121. Young, J. A., R. A. Evans &J. D. Curtis. 1980. Germinable seeds and periodicity of germination in annual grasslands. Hilgardia49: 1–37.Google Scholar

Copyright information

© The New York Botanical Garden 1987

Authors and Affiliations

  • Irwin A. Ungar
    • 1
  1. 1.Department of BotanyOhio UniversityAthens

Personalised recommendations