Skip to main content

Anther plastids in angiosperms

Abstract

In the anther of angiosperms, all types of plastids are found in the course of pollen development. They are located in the different cell layers of the microsporangium and have various functions that contribute to the formation of the functional male gametophyte. This includes photosynthesis, stomata opening, sugar storage and/or mobilization, lipid synthesis and secretion for pollenkitt formation, as well as serving as a physiological buffer under stress conditions. They are also involved in plastid inheritance, but to different extents, according to the species.

The plastid is a semi-autonomous organelle. Plastid division in the anther is synchronous with cell division, except in the vegetative cell during pollen maturation. Furthermore, recent data seem to show that plastids are affected by programmed cell death and DNA degradation, which occur in the whole anther throughout pollen development. However, the timing of plastid disappearance fluctuates in the different cell layers and also depending on species.

In vitro, following androgenesis, plastids that originate in the microspore are responsible for the occurrence of albino plantlets in Poaceae. This trait reflects the relative independence of the plastid genome when compared with that of the nucleus. In this family, microspore plastids may become so involved in programmed cell death that they are unable to follow the alternative sporopohytic program.

The different pathways of plastid differentiation in neighboring anther cell layers require an accurate regulation of cell development that remains widely unknown in the anther.

Résumé

Dans l’anthère des angiospermes, on trouve tous les types de plastes au cours du développement pollinique. Ils sont localisés dans les différentes couches cellulaires du microsporange et possèdent des fonctions variées contribuant à la formation du gamétophyte mâle fonctionnel. Cela recouvre la photosynthèse, l’ouverture des stomates, le stockage et/ou la mobilisation de glucides, la synthèse et la sécrétion de lipides pour la formation du pollenkitt, ainsi qu’un rôle de tampon physiologique en conditions stressantes. Ils sont également impliqués dans l’hérédité plastidiale à un degré divers en fonction des espèces.

Le plaste est un organite semi-autonome. La division plastidiale au sein de l’anthère est synchrone avec la division cellulaire, excepté dans la cellule végétative pendant la maturation du pollen. Par ailleurs, des données récentes semblent montrer que les plastes sont affectés par la mort cellullaire programmée et la dégradation d’ADN qui se produisent dans la totalité de l’anthère tout au long du développement pollinique. Toutefois, la chronologie de disparition des plastes fluctue dans les différentes couches cellulaires et aussi en fonction des espèces.

In vitro, durant le processus d’androgenèse, les plastes originaires de la microspore sont responsables de l’apparition de plantules albinos chez les Poaceae. Ce caractère reflète la relative indépendance du génome plastidial par rapport au génome nucléaire. Dans cette famille, il est probable que les plastes de la microspore sont trop engagés dans le programme de mort cellulaire et demeurent incapables de suivre un nouveau programme sporophytique.

Les différentes voies de différenciation plastidiale observées dans les couches cellulaires voisines de l’anthère requièrent une régulation précise du développement cellulaire qui demeure largement inconnue dans l’anthère.

This is a preview of subscription content, access via your institution.

Literature Cited

  • Bellani, L.M., E. Pacini &G. G. Franchi. 1985a.In vitro pollen grain germination and starch content in species with different reproductive cycle, I.Lycopersicum peruvianum Mill. Acta Bot. Neerl. 34: 59–64.

    Google Scholar 

  • ——— 1985b.In vitro pollen grain germination and starch content in species with different reproductive cycle, II.Malus domestica Borkh. Cultivars Starkrimson and golden delicious. Acta Bot. Neerl. 34: 65–71.

    Google Scholar 

  • Bhadula, S. K. &V. K. Sawhney. 1989. Amylolytic activity and carbohydrate levels during the stamen ontogeny of a male fertile, and a “gibberellin-sensitive” male sterile mutant of tomato (Lycopersicon esculentum). J. Exp. Bot. 40: 789–794.

    CAS  Article  Google Scholar 

  • Biddle, J. A. 1979. Anther and pollen development in garden pea and cultivated lentil. Canad. J. Bot. 57: 1883–1900.

    Article  Google Scholar 

  • Bird, J., E. K. Porter &H. G. Dickinson. 1983. Events in the cytoplasm during male meiosis inLilium. J. Cell Sci. 59: 27–42.

    PubMed  CAS  Google Scholar 

  • Caredda, S. &C. Clément. 1999. Androgenesis and albinism in Poaceae: Influence of genotype and carbohydrates. Pp. 211–228in C. Clément, E. Pacini & J. C. Audran (eds.), Anther and pollen: From biology to biotechnology. Springer-Verlag, Berlin.

    Google Scholar 

  • —,P. Devaux, R. S. Sangwan &C. Clément. 1999. Differential development of plastid during microspore embryogenesis in barley. Protoplasma 208: 248–256.

    Article  Google Scholar 

  • C. Doncoeur, P. Devaux, R. S. Sangwan &C. Clément. 2000. Plastid differentiation during pollen development and microspore embryogenesis inHordeum vulgare L.Sexual Pl. Reprod. 13: 95–104.

    CAS  Article  Google Scholar 

  • Christensen, J. E. &H. T. Horner Jr. 1974. Pollen pore development and its spatial orientation during microsporogenesis in the grassSorghum bicolor. Amer. J. Bot. 61: 604–623.

    Article  Google Scholar 

  • Ciampolini, F., M. Nepi &E. Pacini. 1993. Tapetum development inCucurbita pepo (Cucurbitaceae). Pp. 13–22in M. Hesse, E. Pacini & M. T. M. Willemse (eds.), The tapetum: Cytology, function, biochemistry and evolution. Pl. Syst. & Evol., Suppl. 7. Springer-Verlag, Vienna.

    Google Scholar 

  • Clément, C. &J. C. Audran. 1995. Anther wall layers control pollen sugar nutrition inLilium. Proto-plasma 187: 172–181.

    Google Scholar 

  • ——. 1999. Anther carbohydrates duringin vivo andin vitro pollen development. Pp. 71–90in C. Clément, E. Pacini & J. C. Audran (eds.), Anther and pollen: From biology to biotechnology. Springer-Verlag, Berlin.

    Google Scholar 

  • L. Chavant, M. Burrus &J. C. Audran. 1994. Anther starch variations inLilium during pollen development. Sexual Pl. Reprod. 7: 347–356.

    Google Scholar 

  • M. Burrus &J. C. Audran. 1996a. Floral organ growth and carbohydrate content during pollen development inLilium. Amer. J. Bot. 83: 459–469.

    Article  Google Scholar 

  • P. Mischler, M. Burrus &J. C. Audran. 1997. Characteristics of the photosynthetic apparatus and CO2-fixation in the flower budof Lilium, 2. Anther. Int. J. Pl. Sci. 158: 801–810.

    Article  Google Scholar 

  • P. Laporte &J. C. Audran. 1998. The loculus content and tapetum during pollen development. Sexual Pl. Reprod. 11: 94–106.

    Article  Google Scholar 

  • Corriveau, J. L., L. J. Goff &A. W. Coleman. 1990. Plastid DNA is not detectable in the male gametes and pollen tubes of an angiosperm (Antirrhinum majus) that is maternal for plastid inheritance. Curr. Genet. 17: 439–444.

    CAS  Article  Google Scholar 

  • Day, A. &T. H. N. Ellis. 1984. Chloroplast DNA deletions associated with wheat plants regenerated from pollen: Possible basis for maternal inheritance of chloroplasts. Cell 39: 359–368.

    PubMed  CAS  Article  Google Scholar 

  • ——. 1985. Deleted forms of plastid DNA in albino plants from cereal anther culture. Curr. Genet. 9: 671–676.

    CAS  Article  Google Scholar 

  • Dickinson, H. G. 1973. The role of plastids in the formation of pollen grain coatings. Cytobios 8: 25–40.

    PubMed  CAS  Google Scholar 

  • — 1981. The structure and chemistry of plastid differentiation during male meiosis inLilium henryi. J. Cell Sci. 52: 223–241.

    PubMed  CAS  Google Scholar 

  • — &D. Lewis. 1973. The formation of tryphine coating the pollen grains ofRaphanus and its properties relating to the self incompatibility system. Proc. Roy. Soc. London, B, 184: 149–156.

    CAS  Article  Google Scholar 

  • Ellis, T. H. N. &A. Day. 1986. A hairpin plastid genome in barley. EMBO J. 5: 2769–2774.

    PubMed  CAS  Google Scholar 

  • Feijo, J. A. &M. S. S. Pais. 1988. Ultrastructural modifications of plastids and starch metabolism during the microsporogenesis ofOphrys lutea (Orchidaceae). Ann. Bot. 61: 215–219.

    CAS  Google Scholar 

  • Fitzgerald, M. A., S. H. Barnes, S. Blackmore, D. M. Calder &R. B. Knox. 1994. Pollen development and cohesion in a mealy and a hard type of orchid pollinium. Int. J. Pl. Sci. 155: 481–491.

    Article  Google Scholar 

  • Franchi, G. G. &E. Pacini. 1988. Pollen polysaccharide reserves in some plants of economic interest. Pp. 90–91in M. Cresti, P. Gori & E. Pacini (eds.), Sexual reproduction in higher plants: Proceedings of the Tenth International Symposium on the Sexual Reproduction in Higher Plants, 30 May–4 June 1988, University of Siena, Siena, Italy. Springer-Verlag, Berlin.

    Google Scholar 

  • —— &P. Rottoli. 1984. Pollen viability inParietaria judaica L. during the long blooming period and correlation with meteorological conditions and allergic diseases. Giorn. Bot. Ital. 118: 163–178.

    Google Scholar 

  • —,L. Bellani, M. Nepi &E. Pacini. 1996. Types of carbohydrates reserves in pollen: Localization, systematic distribution and ecophysiological significance. Flora 191: 143–159.

    Google Scholar 

  • Garrido, D., O. Vicente, E. Heberle-Bors &M. I. Rodríguez-García. 1995. Cellular changes during the acquisition of embryogenic potential in isolated pollen grains ofNicotiana tabacum. Protoplasma 186: 220–230.

    Article  Google Scholar 

  • Gori, P. 1982. Accumulation of polysaccharides in the anther cavity ofAllium sativum, clone Piemonte. J. Ultrastruct. Res. 81: 158–162.

    PubMed  CAS  Article  Google Scholar 

  • Hageman, R. &M. B. Schröder. 1989. The cytological basis of the plastid inheritance in angiosperms. Protoplasma 152: 57–64.

    Article  Google Scholar 

  • Hause, G. 1991. Ultrastructural investigations of mature embryo sacs ofDaucus carota, D. aureus, andD. muricatus: Possible cytological explanations of paternal plastid inheritance. Sexual Pl. Reprod. 4: 288–292.

    Google Scholar 

  • Heslop-Harrison, J. 1968. Tapetal origin of pollen coat substances inLilium. New Phytol. 67: 779–786.

    CAS  Article  Google Scholar 

  • —,Y. Heslop-Harrison &J. S. Heslop-Harrison 1997. Motility in ungerminated grass pollen: Association of myosin with polysaccharide-containing wall-precursor bodies (P-particles). Sexual Pl. Reprod. 10: 65–66.

    Article  Google Scholar 

  • Hess, M. 1991. Ultrastructure of organelles during microsporogenesis inTillandsia pallidoflavens (Bromeliaceae). Pl. Syst. & Evol. 176: 63–74.

    Article  Google Scholar 

  • — &M. Hesse. 1994. Ultrastructural observations on anther tapetum development of freeze-fixedLedebouria socialis Roth (Hyacinthaceae). Planta 192: 421–430.

    CAS  Article  Google Scholar 

  • Hesse, M. 1993. Pollenkitt development and composition inTilia platyphyllos (Tiliaceae) analysed by conventional and energy filtering TEM. Pp. 39–52in M. Hesse, E. Pacini & M. T. M. Willemse (eds.), The tapetum: Cytology, function, biochemistry and evolution. Pl. Syst. & Evol., Suppl. 7. Springer-Verlag, Vienna.

    Google Scholar 

  • — &M. Hess. 1993. Recent trends in tapetum research: A cytological and methodological review. Pp. 127–145in M. Hesse, E. Pacini & M. T. M. Willemse (eds.), The tapetum: Cytology, function, biochemistry and evolution. Pl. Syst. & Evol., Suppl. 7. Springer-Verlag, Vienna.

    Google Scholar 

  • Hixon, R. M. &B. Brimhall. 1968. Waxy cereals and red iodine starches: Starch and its derivatives. Ed. 4. Chapman & Hall, London.

    Google Scholar 

  • Hourcade, D. E., M. Bugg &D. F. Loussaert. 1986. The use of Gaspé variety for the study of pollen and anther development in maize. Pp. 319–324in D. L. Mulcahy, G. B. Mulcahy & E. Ottaviano (eds.), Biotechnology and ecology of pollen: Proceedings of the International Conference on the Biotechnology and Ecology of Pollen, 9–11 July 1985, University of Massachusetts, Amtierst, MA, U.S.A. Springer-Verlag, New York.

    Google Scholar 

  • Jähne, A. &H. Lörz. 1995. Cereal microspore culture. Pl. Sci. (Elsevier) 109: 1–12.

    Article  Google Scholar 

  • Keijzer, C. J. 1987. The process of anther dehiscence and pollen dispersal, 1. The opening mechanism of longitudinally dehiscing anthers. New Phytol. 105: 487–498.

    Article  Google Scholar 

  • —. 1988a. Tissue interactions in the developing locule ofGasleria verrucosa during microsporogenesis. Acta Bot. Neerl. 37: 475–492.

    Google Scholar 

  • ——. 1988b. Tissue interactions in the developing locule ofGasteria verrucosa during microgametogenesis. Acta Bot. Neerl. 37: 493–508.

    Google Scholar 

  • Kirichenko, A. B., E. B. Kirichenko &A. A. Chebotar. 1977. Ultrastructure of anther ofHordeum vulgare L. at the stage of bicellular pollen: Characteristics of plastid differentiation. Physiol. Rast. 24: 751–755.

    Google Scholar 

  • Kirichenko, E., T. Krendéléva, G. Koukarskikh &N. Nizovskaia. 1992. Structure et activité fonctionnelle des chloroplastes des anthères et du péricarpe des caryopses de blé et de seigle. Compt. Rend. Acad. Sci. Paris, Ser. 3, Sci. Vie 314: 365–370.

    CAS  Google Scholar 

  • ————. 1993. Photochemical activity in chloroplasts of anthers and caryopsis in cereals. Russ. Pl. Physiol. 40: 229–233.

    Google Scholar 

  • Knox, R. B. &C. Suphioglu. 1996. Environmental and molecular biology of pollen allergens. Trends Pl. Sci. 1: 156–164.

    Article  Google Scholar 

  • Kott, L. S., L. Polsoni &W. D. Beversdorf. 1988. Cytological aspects of isolated microspore culture ofBrassica napus. Canad. J. Bot. 66: 1658–1664.

    Google Scholar 

  • Lalonde, S., D. U. Beebe &H. S. Saini. 1997. Early signs of wheat anther development associated with the induction of male sterility by meiotic-stage water deficit. Sexual Pl. Reprod. 10: 40–48.

    Article  Google Scholar 

  • Linskens, H. F., P. van der Werken &W. Jorde. 1980. The formation of allergens during development of rye pollen (Secale cereale). Allergol. & Immunopathol. 8: 35–41.

    CAS  Google Scholar 

  • Lisci, M., C. Tanda &E. Pacini. 1994. Pollination ecophysiology ofMercurialis annua L. (Euphorbiaceae): An anemophilous species flowering all year round. Ann. Bot. 74: 125–135.

    Article  Google Scholar 

  • Ljubesic, N., M. Wrischer &Z. Devidé. 1991. Chromoplasts—The last stages in plastid development. Int. J. Dev. Biol. 35: 251–258.

    PubMed  CAS  Google Scholar 

  • Lord, E. M. 1981. Cleistogamy: A tool for the study of floral morphogenesis, function and evolution. Bot. Rev. (Lancaster) 47: 421–449.

    Article  Google Scholar 

  • Mandaron, P., M. F. Niogret, R. Mache &F. Monéger. 1990.In vitro protein synthesis in isolated microspores ofZea mays at several stages of development. Theor. Appl. Genet. 80: 134–138.

    CAS  Article  Google Scholar 

  • Miyamura, S., T. Kuroiwa &T. Nagata. 1987. Disappearance of plastid and mitochondrial nucleoids during the formation of generative cells of higher plants revealed by fluorescence microscopy. Protoplasma 141: 149–159.

    Article  Google Scholar 

  • Mlodzianowski, F. &K. Idzikowska. 1978. The ultrastructure of anther wall and pollen ofHordeum vulgare at the microspore stage. Acta Soc. Bot. Poloniae. 47: 219–224.

    Google Scholar 

  • Mogensen, H. L. 1996. The hows and whys of cytoplasmic inheritance in seed plants. Amer. J. Bot. 83: 383–404.

    Article  Google Scholar 

  • Murgia, M., M. Charzynska, M. Rougier &M. Cresti. 1991. Secretory tapetum ofBrassica oleracea L.: Polarity and ultrastructural features. Sexual Pl. Reprod. 4: 28–35.

    Google Scholar 

  • Nagata, N., C. Saito, A. Sakai, H. Kuroiwa &T. Kuroiwa. 1999a. The selective increase or decrease of organellar DNA in generative cells just after pollen mitosis one controls cytoplasmic inheritance. Planta 209: 53–65.

    PubMed  CAS  Article  Google Scholar 

  • ————— 1999b. Decrease in mitochondrial DNA and concurrent increase in plastid DNA in generative cells ofPharbitis nil during pollen development. Eur. J. Cell Biol. 78: 241–248.

    PubMed  CAS  Google Scholar 

  • Nepi, M., F. Ciampolini &E. Pacini. 1996. Plastid differentiation duringCucurbita pepo (Cucurbitaceae) pollen grain development. Sexual Pl. Reprod. 9: 17–24.

    Google Scholar 

  • Noherde Halac,I., I. A. Cismondi &C. Harte. 1990. Pollen ontogenesis inOenothera: Comparison of genotypically normal with the male-sterile mutantsterilis. Sexual Pl. Reprod. 3: 41–53.

    Google Scholar 

  • Olmedilla, A., J. A. M. Schrauwen &G. J. Wullems. 1991. Visualization of starch-sybthase expression by in situ hybridization during pollen development. Planta 184: 182–186.

    CAS  Article  Google Scholar 

  • Pacini, E. 1994. Cell biology of anther and pollen development. Pp. 289–308in E. G. Williams, A. E. Clarke & R. B. Knox (eds.), Genetic control of self-incompatibility and reproductive development in flowering plants. Kluwer Academic, Dordrecht, Netherlands.

    Google Scholar 

  • — 1996. Types and meaning of pollen carbohydrate reserves. Sexual Pl. Reprod. 9: 362–366.

    CAS  Article  Google Scholar 

  • — 1997. Tapetum character states: Analytical keys for tapetum types and activities. Canad. J. Bot. 75: 1448–1459.

    Article  Google Scholar 

  • — &G. G. Franchi. 1983. Pollen grain development inSmilax aspera L. and possible functions of the loculus. Pp. 183–190in D. L. Mulcahy & E. Ottaviano (eds.), Pollen: Biology and implications for plant breeding: Proceedings of the Symposium on Pollen—Biology and Implications for Plant Breeding, Villa Feltrinelli, Lake Garda, Italy, June 23–26, 1982. Elsevier Biomedical, New York.

    Google Scholar 

  • —— 1991. Diversification and evolution of the tapetum. Pp. 301–316in S. Blackmore & S. H. Barnes (eds.), Pollen and spores: Patterns of diversification. Systematics Association; Clarendon Press, Oxford.

    Google Scholar 

  • — &B. E. Juniper. 1979. The ultrastructure of pollen-grain development in the olive (Olea europea), 2. Secretion by the tapetal cells. New Phytol. 83: 165–174.

    Article  Google Scholar 

  • ——. 1984. The ultrastructure of pollen grain development inLycopersicum peruvianum. Caryologia 37: 21–50.

    Google Scholar 

  • —,P. E. Taylor, M. B. Singh &R. B. Knox. 1992a. Development of plastids in pollen and tapetum of rye-grass,Lolium perenne L. Ann. Bot. 70: 179–188.

    Google Scholar 

  • ————. 1992b. Plastid developmental pathways in some angiosperm reproductive cells. Pp. 36–42in E. Ottaviano, D. L. Mulcahy & M. Sari-Gorla (eds.), Angiosperm pollen and ovules. Springer-Verlag, New York.

    Google Scholar 

  • Panchaksharappa, M. G. &C. K. Rudramuniyappa. 1974. Localization of nucleic acids and insoluble polysaccharides in the anther ofZea mays L.: A histochemical study. Cytology 39: 133–138.

    CAS  Google Scholar 

  • Pandolfi, T., E. Pacini &D. M. Calder. 1993. Ontogenesis of monad pollen inPterostylis plumosa (Orchidaceae, Neottiaideae). Pl. Syst. & Evol. 186: 175–185.

    Article  Google Scholar 

  • Pifanelli, P., J. E. Ross &D. J. Murphy. 1998. Biogenesis and function of the lipidic structures of pollen grains. Sexual Pl. Reprod. 11: 65–80.

    Article  Google Scholar 

  • Pyke, K. A. 1997. The genetic control of plastid division in higher plants. Amer. J. Bot. 84: 1017–1027.

    CAS  Article  Google Scholar 

  • Reznickova, A. 1978. Histochemical study of reserve nutrient substances inLilium candidum. Compt. Rend. Acad. Bulgarie Sci. 31: 1067–1070.

    Google Scholar 

  • — &H. G. Dickinson. 1982. Ultrastructural aspects of storage lipid mobilization in the tapetum ofLilium hybrida var. Enchantment. Planta 155: 400–408.

    Article  Google Scholar 

  • — &M. T. M. Willemse. 1980. Formation of the pollen in the anther ofLilium, 2. The function of the surrounding tissues in the formation of pollen and pollen wall. Acta Bot. Neerl. 29: 141–156.

    Google Scholar 

  • —— 1981. The function of the tapetal tissue during microsporogenesis inLilium. Acta Soc. Bot. Poloniae 50: 83–87.

    CAS  Google Scholar 

  • Saini, H. S. 1997. Effects of water stress on male gametophyte development in plants. Sexual Pl. Reprod. 10: 67–73.

    Article  Google Scholar 

  • — &S. Lalonde. 1998. Injuries to reproductive development under water stress, and their consequences for crop productivity. J. Crop Prod. 1: 223–248.

    Google Scholar 

  • Sangwan, R. S. &B. S. Sangwan-Norreel. 1987. Ultrastructural cytology of plastids in pollen grains of certain androgenic and nonandrogenic plants. Protoplasma 138: 11–22.

    Article  Google Scholar 

  • Schröder, M. B. 1985. Ultrastructural studies on plastids of generative cells inLiliaceae, 3. Plastid distribution during pollen development inGasteria verrucosa (Mill.) Duval. Protoplasma 124: 123–129.

    Article  Google Scholar 

  • Schumann, C. M. &S. M. Hancock. 1989. Paternal inheritance of plastids inMedicago sativa. Theor. Appl. Genet. 78: 863–866.

    CAS  Article  Google Scholar 

  • Sodmergen, H., T. Suzuki, S. Kawano, S. Nakamura, S. Tano &T. Kuroiwa. 1992. Behavior of organelle nuclei (nucleoids) in generative and vegetative cells during maturation of pollen inLilium longiflorum andPelargonium zonale. Protoplasma 168: 73–82.

    Article  Google Scholar 

  • —,Y. Y. Luo, T. Kuroiwa &S. Y. Hu. 1994. Cytoplasmic DNA apportionment and plastid differentiation during male gametophyte development inPelargonium zonale. Sexual Pl. Reprod. 7: 51–56.

    Google Scholar 

  • —,H. Bai, J. X. He, H. Kuroiwa, S. Kawano &T. Kuroiwa. 1998. Potential for biparental cytoplasmic inheritance inJasminum officinale andJasminum nudiflorum. Sexual Pl. Reprod. 65: 107–112.

    Google Scholar 

  • Speranza, A., G. L. Calzoni &E. Pacini. 1997. Occurrence of monoor disaccharides and polysaccharide reserves in mature pollen grains. Sexual Pl. Reprod. 10: 110–115.

    CAS  Article  Google Scholar 

  • Sun, C. S., S. C. Wu, C. C. Wang &C. C. Chu. 1979. The deficiency of soluble proteins and plastid ribosomal RNA in the albino plantlets of rice. Theor. Appl. Genet. 55: 193–197.

    CAS  Article  Google Scholar 

  • Sunderland, N. &B. Huang. 1985. Barley anther culture: The switch of programme and albinism. Hereditas (Lund), Suppl. 3: 27–40.

    Article  Google Scholar 

  • Takahashi, M. 1987. Development of omniaperturate pollen inTrillium kamtschaticum (Liliaceae). Amer. J. Bot. 74: 1842–1852.

    Article  Google Scholar 

  • Tanaka, I. 1991. Microtubule-determined plastids distribution during microsporogenesis inLilium longiflorum. J. Cell Sci. 99: 21–31.

    CAS  Google Scholar 

  • Taylor, P. E., K. Spuck, P. M. Smith, J. M. Sasse, T. Yokota, P. G. Griffiths &D. W. Cameron. 1993. Detection of brassinosteroids in pollen ofLolium perenne L. by immunocytochemistry. Planta 189: 91–100.

    CAS  Google Scholar 

  • Ting, J. T. L., S. S. H. Wu, C. Ratnayake &A. H. C. Huang. 1998. Constituents of tapetasomes and elaioplasts inBrassica campestris tapetum and their degradation and retention during microsporogenesis. Pl. J. 16(5): 541–551.

    CAS  Article  Google Scholar 

  • Wang, M., S. Hoekstra, S. van Bergen, G. E. M. Lamers, B. J. Oppedjik, W. dePriester &R. A. Schilperoort. 1999a. Apoptosis in developing anthers and the role of ABA in this process during androgenesis inHordeum vulgäre L. Pl. Molec. Biol. 39: 489–501.

    CAS  Article  Google Scholar 

  • —,S. van Bergen, G. E. M. Lamers, B. J. Oppedjik &R. A. Schilperoort. 1999b. Programmed cell death during androgenesis inHordeum vulgare L. Pp. 201–210in C. Clément, E. Pacini & J. C. Audran (eds.), Anther and pollen: From biology to biotechnology. Springer-Verlag, Berlin.

    Google Scholar 

  • Weber, M. 1992. The formation of pollenkitt inApium nodiflorum (Apiaceae). Ann. Bot. 70: 573–577.

    Google Scholar 

  • — 1996. The existence of a special exine coating inGeranium robertianum pollen. Int. J. Pl. Sci. 157: 195–202.

    Article  Google Scholar 

  • Wetzel, C. L. &W. A. Jensen. 1992. Studies of pollen maturation in cotton: The storage reserve accumulation phase. Sexual Pl. Reprod. 5: 117–127.

    Google Scholar 

  • Wheatley, J. M. 1977. Variations in the basic pathway of chloroplast development. New Phytol. 78: 407–420.

    Article  Google Scholar 

  • Xi, X. Y. 1991. Development and structure of pollen and embryo sac in Peanut (Arachis hypogaea L). Bot. Gaz. (Crawfordsville) 152: 164–172.

    Article  Google Scholar 

  • Zaki, M. A. &H. G. Dickinson. 1990. Structural changes during the first divisions of embryos resulting from anther and free microspore culture inBrassica napus. Protoplasma 156: 149–162.

    Article  Google Scholar 

  • Zavada, M. S. 1984. Pollen wall development inAustrobaileya maculata. Bot. Gaz. (Crawfordsville) 145: 11–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Clément, C., Pacini, E. Anther plastids in angiosperms. Bot. Rev 67, 54–73 (2001). https://doi.org/10.1007/BF02857849

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02857849

Keywords

  • Starch
  • Botanical Review
  • Pollen Development
  • Tapetal Cell
  • Anther Wall