The Botanical Review

, 67:54 | Cite as

Anther plastids in angiosperms

  • Christophe Clément
  • Ettore Pacini


In the anther of angiosperms, all types of plastids are found in the course of pollen development. They are located in the different cell layers of the microsporangium and have various functions that contribute to the formation of the functional male gametophyte. This includes photosynthesis, stomata opening, sugar storage and/or mobilization, lipid synthesis and secretion for pollenkitt formation, as well as serving as a physiological buffer under stress conditions. They are also involved in plastid inheritance, but to different extents, according to the species.

The plastid is a semi-autonomous organelle. Plastid division in the anther is synchronous with cell division, except in the vegetative cell during pollen maturation. Furthermore, recent data seem to show that plastids are affected by programmed cell death and DNA degradation, which occur in the whole anther throughout pollen development. However, the timing of plastid disappearance fluctuates in the different cell layers and also depending on species.

In vitro, following androgenesis, plastids that originate in the microspore are responsible for the occurrence of albino plantlets in Poaceae. This trait reflects the relative independence of the plastid genome when compared with that of the nucleus. In this family, microspore plastids may become so involved in programmed cell death that they are unable to follow the alternative sporopohytic program.

The different pathways of plastid differentiation in neighboring anther cell layers require an accurate regulation of cell development that remains widely unknown in the anther.


Starch Botanical Review Pollen Development Tapetal Cell Anther Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Dans l’anthère des angiospermes, on trouve tous les types de plastes au cours du développement pollinique. Ils sont localisés dans les différentes couches cellulaires du microsporange et possèdent des fonctions variées contribuant à la formation du gamétophyte mâle fonctionnel. Cela recouvre la photosynthèse, l’ouverture des stomates, le stockage et/ou la mobilisation de glucides, la synthèse et la sécrétion de lipides pour la formation du pollenkitt, ainsi qu’un rôle de tampon physiologique en conditions stressantes. Ils sont également impliqués dans l’hérédité plastidiale à un degré divers en fonction des espèces.

Le plaste est un organite semi-autonome. La division plastidiale au sein de l’anthère est synchrone avec la division cellulaire, excepté dans la cellule végétative pendant la maturation du pollen. Par ailleurs, des données récentes semblent montrer que les plastes sont affectés par la mort cellullaire programmée et la dégradation d’ADN qui se produisent dans la totalité de l’anthère tout au long du développement pollinique. Toutefois, la chronologie de disparition des plastes fluctue dans les différentes couches cellulaires et aussi en fonction des espèces.

In vitro, durant le processus d’androgenèse, les plastes originaires de la microspore sont responsables de l’apparition de plantules albinos chez les Poaceae. Ce caractère reflète la relative indépendance du génome plastidial par rapport au génome nucléaire. Dans cette famille, il est probable que les plastes de la microspore sont trop engagés dans le programme de mort cellulaire et demeurent incapables de suivre un nouveau programme sporophytique.

Les différentes voies de différenciation plastidiale observées dans les couches cellulaires voisines de l’anthère requièrent une régulation précise du développement cellulaire qui demeure largement inconnue dans l’anthère.

Literature Cited

  1. Bellani, L.M., E. Pacini &G. G. Franchi. 1985a.In vitro pollen grain germination and starch content in species with different reproductive cycle, I.Lycopersicum peruvianum Mill. Acta Bot. Neerl. 34: 59–64.Google Scholar
  2. ——— 1985b.In vitro pollen grain germination and starch content in species with different reproductive cycle, II.Malus domestica Borkh. Cultivars Starkrimson and golden delicious. Acta Bot. Neerl. 34: 65–71.Google Scholar
  3. Bhadula, S. K. &V. K. Sawhney. 1989. Amylolytic activity and carbohydrate levels during the stamen ontogeny of a male fertile, and a “gibberellin-sensitive” male sterile mutant of tomato (Lycopersicon esculentum). J. Exp. Bot. 40: 789–794.CrossRefGoogle Scholar
  4. Biddle, J. A. 1979. Anther and pollen development in garden pea and cultivated lentil. Canad. J. Bot. 57: 1883–1900.CrossRefGoogle Scholar
  5. Bird, J., E. K. Porter &H. G. Dickinson. 1983. Events in the cytoplasm during male meiosis inLilium. J. Cell Sci. 59: 27–42.PubMedGoogle Scholar
  6. Caredda, S. &C. Clément. 1999. Androgenesis and albinism in Poaceae: Influence of genotype and carbohydrates. Pp. 211–228in C. Clément, E. Pacini & J. C. Audran (eds.), Anther and pollen: From biology to biotechnology. Springer-Verlag, Berlin.Google Scholar
  7. —,P. Devaux, R. S. Sangwan &C. Clément. 1999. Differential development of plastid during microspore embryogenesis in barley. Protoplasma 208: 248–256.CrossRefGoogle Scholar
  8. C. Doncoeur, P. Devaux, R. S. Sangwan &C. Clément. 2000. Plastid differentiation during pollen development and microspore embryogenesis inHordeum vulgare L.Sexual Pl. Reprod. 13: 95–104.CrossRefGoogle Scholar
  9. Christensen, J. E. &H. T. Horner Jr. 1974. Pollen pore development and its spatial orientation during microsporogenesis in the grassSorghum bicolor. Amer. J. Bot. 61: 604–623.CrossRefGoogle Scholar
  10. Ciampolini, F., M. Nepi &E. Pacini. 1993. Tapetum development inCucurbita pepo (Cucurbitaceae). Pp. 13–22in M. Hesse, E. Pacini & M. T. M. Willemse (eds.), The tapetum: Cytology, function, biochemistry and evolution. Pl. Syst. & Evol., Suppl. 7. Springer-Verlag, Vienna.Google Scholar
  11. Clément, C. &J. C. Audran. 1995. Anther wall layers control pollen sugar nutrition inLilium. Proto-plasma 187: 172–181.Google Scholar
  12. ——. 1999. Anther carbohydrates duringin vivo andin vitro pollen development. Pp. 71–90in C. Clément, E. Pacini & J. C. Audran (eds.), Anther and pollen: From biology to biotechnology. Springer-Verlag, Berlin.Google Scholar
  13. L. Chavant, M. Burrus &J. C. Audran. 1994. Anther starch variations inLilium during pollen development. Sexual Pl. Reprod. 7: 347–356.Google Scholar
  14. M. Burrus &J. C. Audran. 1996a. Floral organ growth and carbohydrate content during pollen development inLilium. Amer. J. Bot. 83: 459–469.CrossRefGoogle Scholar
  15. P. Mischler, M. Burrus &J. C. Audran. 1997. Characteristics of the photosynthetic apparatus and CO2-fixation in the flower budof Lilium, 2. Anther. Int. J. Pl. Sci. 158: 801–810.CrossRefGoogle Scholar
  16. P. Laporte &J. C. Audran. 1998. The loculus content and tapetum during pollen development. Sexual Pl. Reprod. 11: 94–106.CrossRefGoogle Scholar
  17. Corriveau, J. L., L. J. Goff &A. W. Coleman. 1990. Plastid DNA is not detectable in the male gametes and pollen tubes of an angiosperm (Antirrhinum majus) that is maternal for plastid inheritance. Curr. Genet. 17: 439–444.CrossRefGoogle Scholar
  18. Day, A. &T. H. N. Ellis. 1984. Chloroplast DNA deletions associated with wheat plants regenerated from pollen: Possible basis for maternal inheritance of chloroplasts. Cell 39: 359–368.PubMedCrossRefGoogle Scholar
  19. ——. 1985. Deleted forms of plastid DNA in albino plants from cereal anther culture. Curr. Genet. 9: 671–676.CrossRefGoogle Scholar
  20. Dickinson, H. G. 1973. The role of plastids in the formation of pollen grain coatings. Cytobios 8: 25–40.PubMedGoogle Scholar
  21. — 1981. The structure and chemistry of plastid differentiation during male meiosis inLilium henryi. J. Cell Sci. 52: 223–241.PubMedGoogle Scholar
  22. — &D. Lewis. 1973. The formation of tryphine coating the pollen grains ofRaphanus and its properties relating to the self incompatibility system. Proc. Roy. Soc. London, B, 184: 149–156.CrossRefGoogle Scholar
  23. Ellis, T. H. N. &A. Day. 1986. A hairpin plastid genome in barley. EMBO J. 5: 2769–2774.PubMedGoogle Scholar
  24. Feijo, J. A. &M. S. S. Pais. 1988. Ultrastructural modifications of plastids and starch metabolism during the microsporogenesis ofOphrys lutea (Orchidaceae). Ann. Bot. 61: 215–219.Google Scholar
  25. Fitzgerald, M. A., S. H. Barnes, S. Blackmore, D. M. Calder &R. B. Knox. 1994. Pollen development and cohesion in a mealy and a hard type of orchid pollinium. Int. J. Pl. Sci. 155: 481–491.CrossRefGoogle Scholar
  26. Franchi, G. G. &E. Pacini. 1988. Pollen polysaccharide reserves in some plants of economic interest. Pp. 90–91in M. Cresti, P. Gori & E. Pacini (eds.), Sexual reproduction in higher plants: Proceedings of the Tenth International Symposium on the Sexual Reproduction in Higher Plants, 30 May–4 June 1988, University of Siena, Siena, Italy. Springer-Verlag, Berlin.Google Scholar
  27. —— &P. Rottoli. 1984. Pollen viability inParietaria judaica L. during the long blooming period and correlation with meteorological conditions and allergic diseases. Giorn. Bot. Ital. 118: 163–178.Google Scholar
  28. —,L. Bellani, M. Nepi &E. Pacini. 1996. Types of carbohydrates reserves in pollen: Localization, systematic distribution and ecophysiological significance. Flora 191: 143–159.Google Scholar
  29. Garrido, D., O. Vicente, E. Heberle-Bors &M. I. Rodríguez-García. 1995. Cellular changes during the acquisition of embryogenic potential in isolated pollen grains ofNicotiana tabacum. Protoplasma 186: 220–230.CrossRefGoogle Scholar
  30. Gori, P. 1982. Accumulation of polysaccharides in the anther cavity ofAllium sativum, clone Piemonte. J. Ultrastruct. Res. 81: 158–162.PubMedCrossRefGoogle Scholar
  31. Hageman, R. &M. B. Schröder. 1989. The cytological basis of the plastid inheritance in angiosperms. Protoplasma 152: 57–64.CrossRefGoogle Scholar
  32. Hause, G. 1991. Ultrastructural investigations of mature embryo sacs ofDaucus carota, D. aureus, andD. muricatus: Possible cytological explanations of paternal plastid inheritance. Sexual Pl. Reprod. 4: 288–292.Google Scholar
  33. Heslop-Harrison, J. 1968. Tapetal origin of pollen coat substances inLilium. New Phytol. 67: 779–786.CrossRefGoogle Scholar
  34. —,Y. Heslop-Harrison &J. S. Heslop-Harrison 1997. Motility in ungerminated grass pollen: Association of myosin with polysaccharide-containing wall-precursor bodies (P-particles). Sexual Pl. Reprod. 10: 65–66.CrossRefGoogle Scholar
  35. Hess, M. 1991. Ultrastructure of organelles during microsporogenesis inTillandsia pallidoflavens (Bromeliaceae). Pl. Syst. & Evol. 176: 63–74.CrossRefGoogle Scholar
  36. — &M. Hesse. 1994. Ultrastructural observations on anther tapetum development of freeze-fixedLedebouria socialis Roth (Hyacinthaceae). Planta 192: 421–430.CrossRefGoogle Scholar
  37. Hesse, M. 1993. Pollenkitt development and composition inTilia platyphyllos (Tiliaceae) analysed by conventional and energy filtering TEM. Pp. 39–52in M. Hesse, E. Pacini & M. T. M. Willemse (eds.), The tapetum: Cytology, function, biochemistry and evolution. Pl. Syst. & Evol., Suppl. 7. Springer-Verlag, Vienna.Google Scholar
  38. — &M. Hess. 1993. Recent trends in tapetum research: A cytological and methodological review. Pp. 127–145in M. Hesse, E. Pacini & M. T. M. Willemse (eds.), The tapetum: Cytology, function, biochemistry and evolution. Pl. Syst. & Evol., Suppl. 7. Springer-Verlag, Vienna.Google Scholar
  39. Hixon, R. M. &B. Brimhall. 1968. Waxy cereals and red iodine starches: Starch and its derivatives. Ed. 4. Chapman & Hall, London.Google Scholar
  40. Hourcade, D. E., M. Bugg &D. F. Loussaert. 1986. The use of Gaspé variety for the study of pollen and anther development in maize. Pp. 319–324in D. L. Mulcahy, G. B. Mulcahy & E. Ottaviano (eds.), Biotechnology and ecology of pollen: Proceedings of the International Conference on the Biotechnology and Ecology of Pollen, 9–11 July 1985, University of Massachusetts, Amtierst, MA, U.S.A. Springer-Verlag, New York.Google Scholar
  41. Jähne, A. &H. Lörz. 1995. Cereal microspore culture. Pl. Sci. (Elsevier) 109: 1–12.CrossRefGoogle Scholar
  42. Keijzer, C. J. 1987. The process of anther dehiscence and pollen dispersal, 1. The opening mechanism of longitudinally dehiscing anthers. New Phytol. 105: 487–498.CrossRefGoogle Scholar
  43. —. 1988a. Tissue interactions in the developing locule ofGasleria verrucosa during microsporogenesis. Acta Bot. Neerl. 37: 475–492.Google Scholar
  44. ——. 1988b. Tissue interactions in the developing locule ofGasteria verrucosa during microgametogenesis. Acta Bot. Neerl. 37: 493–508.Google Scholar
  45. Kirichenko, A. B., E. B. Kirichenko &A. A. Chebotar. 1977. Ultrastructure of anther ofHordeum vulgare L. at the stage of bicellular pollen: Characteristics of plastid differentiation. Physiol. Rast. 24: 751–755.Google Scholar
  46. Kirichenko, E., T. Krendéléva, G. Koukarskikh &N. Nizovskaia. 1992. Structure et activité fonctionnelle des chloroplastes des anthères et du péricarpe des caryopses de blé et de seigle. Compt. Rend. Acad. Sci. Paris, Ser. 3, Sci. Vie 314: 365–370.Google Scholar
  47. ————. 1993. Photochemical activity in chloroplasts of anthers and caryopsis in cereals. Russ. Pl. Physiol. 40: 229–233.Google Scholar
  48. Knox, R. B. &C. Suphioglu. 1996. Environmental and molecular biology of pollen allergens. Trends Pl. Sci. 1: 156–164.CrossRefGoogle Scholar
  49. Kott, L. S., L. Polsoni &W. D. Beversdorf. 1988. Cytological aspects of isolated microspore culture ofBrassica napus. Canad. J. Bot. 66: 1658–1664.Google Scholar
  50. Lalonde, S., D. U. Beebe &H. S. Saini. 1997. Early signs of wheat anther development associated with the induction of male sterility by meiotic-stage water deficit. Sexual Pl. Reprod. 10: 40–48.CrossRefGoogle Scholar
  51. Linskens, H. F., P. van der Werken &W. Jorde. 1980. The formation of allergens during development of rye pollen (Secale cereale). Allergol. & Immunopathol. 8: 35–41.Google Scholar
  52. Lisci, M., C. Tanda &E. Pacini. 1994. Pollination ecophysiology ofMercurialis annua L. (Euphorbiaceae): An anemophilous species flowering all year round. Ann. Bot. 74: 125–135.CrossRefGoogle Scholar
  53. Ljubesic, N., M. Wrischer &Z. Devidé. 1991. Chromoplasts—The last stages in plastid development. Int. J. Dev. Biol. 35: 251–258.PubMedGoogle Scholar
  54. Lord, E. M. 1981. Cleistogamy: A tool for the study of floral morphogenesis, function and evolution. Bot. Rev. (Lancaster) 47: 421–449.CrossRefGoogle Scholar
  55. Mandaron, P., M. F. Niogret, R. Mache &F. Monéger. 1990.In vitro protein synthesis in isolated microspores ofZea mays at several stages of development. Theor. Appl. Genet. 80: 134–138.CrossRefGoogle Scholar
  56. Miyamura, S., T. Kuroiwa &T. Nagata. 1987. Disappearance of plastid and mitochondrial nucleoids during the formation of generative cells of higher plants revealed by fluorescence microscopy. Protoplasma 141: 149–159.CrossRefGoogle Scholar
  57. Mlodzianowski, F. &K. Idzikowska. 1978. The ultrastructure of anther wall and pollen ofHordeum vulgare at the microspore stage. Acta Soc. Bot. Poloniae. 47: 219–224.Google Scholar
  58. Mogensen, H. L. 1996. The hows and whys of cytoplasmic inheritance in seed plants. Amer. J. Bot. 83: 383–404.CrossRefGoogle Scholar
  59. Murgia, M., M. Charzynska, M. Rougier &M. Cresti. 1991. Secretory tapetum ofBrassica oleracea L.: Polarity and ultrastructural features. Sexual Pl. Reprod. 4: 28–35.Google Scholar
  60. Nagata, N., C. Saito, A. Sakai, H. Kuroiwa &T. Kuroiwa. 1999a. The selective increase or decrease of organellar DNA in generative cells just after pollen mitosis one controls cytoplasmic inheritance. Planta 209: 53–65.PubMedCrossRefGoogle Scholar
  61. ————— 1999b. Decrease in mitochondrial DNA and concurrent increase in plastid DNA in generative cells ofPharbitis nil during pollen development. Eur. J. Cell Biol. 78: 241–248.PubMedGoogle Scholar
  62. Nepi, M., F. Ciampolini &E. Pacini. 1996. Plastid differentiation duringCucurbita pepo (Cucurbitaceae) pollen grain development. Sexual Pl. Reprod. 9: 17–24.Google Scholar
  63. Noherde Halac,I., I. A. Cismondi &C. Harte. 1990. Pollen ontogenesis inOenothera: Comparison of genotypically normal with the male-sterile mutantsterilis. Sexual Pl. Reprod. 3: 41–53.Google Scholar
  64. Olmedilla, A., J. A. M. Schrauwen &G. J. Wullems. 1991. Visualization of starch-sybthase expression by in situ hybridization during pollen development. Planta 184: 182–186.CrossRefGoogle Scholar
  65. Pacini, E. 1994. Cell biology of anther and pollen development. Pp. 289–308in E. G. Williams, A. E. Clarke & R. B. Knox (eds.), Genetic control of self-incompatibility and reproductive development in flowering plants. Kluwer Academic, Dordrecht, Netherlands.Google Scholar
  66. — 1996. Types and meaning of pollen carbohydrate reserves. Sexual Pl. Reprod. 9: 362–366.CrossRefGoogle Scholar
  67. — 1997. Tapetum character states: Analytical keys for tapetum types and activities. Canad. J. Bot. 75: 1448–1459.CrossRefGoogle Scholar
  68. — &G. G. Franchi. 1983. Pollen grain development inSmilax aspera L. and possible functions of the loculus. Pp. 183–190in D. L. Mulcahy & E. Ottaviano (eds.), Pollen: Biology and implications for plant breeding: Proceedings of the Symposium on Pollen—Biology and Implications for Plant Breeding, Villa Feltrinelli, Lake Garda, Italy, June 23–26, 1982. Elsevier Biomedical, New York.Google Scholar
  69. —— 1991. Diversification and evolution of the tapetum. Pp. 301–316in S. Blackmore & S. H. Barnes (eds.), Pollen and spores: Patterns of diversification. Systematics Association; Clarendon Press, Oxford.Google Scholar
  70. — &B. E. Juniper. 1979. The ultrastructure of pollen-grain development in the olive (Olea europea), 2. Secretion by the tapetal cells. New Phytol. 83: 165–174.CrossRefGoogle Scholar
  71. ——. 1984. The ultrastructure of pollen grain development inLycopersicum peruvianum. Caryologia 37: 21–50.Google Scholar
  72. —,P. E. Taylor, M. B. Singh &R. B. Knox. 1992a. Development of plastids in pollen and tapetum of rye-grass,Lolium perenne L. Ann. Bot. 70: 179–188.Google Scholar
  73. ————. 1992b. Plastid developmental pathways in some angiosperm reproductive cells. Pp. 36–42in E. Ottaviano, D. L. Mulcahy & M. Sari-Gorla (eds.), Angiosperm pollen and ovules. Springer-Verlag, New York.Google Scholar
  74. Panchaksharappa, M. G. &C. K. Rudramuniyappa. 1974. Localization of nucleic acids and insoluble polysaccharides in the anther ofZea mays L.: A histochemical study. Cytology 39: 133–138.Google Scholar
  75. Pandolfi, T., E. Pacini &D. M. Calder. 1993. Ontogenesis of monad pollen inPterostylis plumosa (Orchidaceae, Neottiaideae). Pl. Syst. & Evol. 186: 175–185.CrossRefGoogle Scholar
  76. Pifanelli, P., J. E. Ross &D. J. Murphy. 1998. Biogenesis and function of the lipidic structures of pollen grains. Sexual Pl. Reprod. 11: 65–80.CrossRefGoogle Scholar
  77. Pyke, K. A. 1997. The genetic control of plastid division in higher plants. Amer. J. Bot. 84: 1017–1027.CrossRefGoogle Scholar
  78. Reznickova, A. 1978. Histochemical study of reserve nutrient substances inLilium candidum. Compt. Rend. Acad. Bulgarie Sci. 31: 1067–1070.Google Scholar
  79. — &H. G. Dickinson. 1982. Ultrastructural aspects of storage lipid mobilization in the tapetum ofLilium hybrida var. Enchantment. Planta 155: 400–408.CrossRefGoogle Scholar
  80. — &M. T. M. Willemse. 1980. Formation of the pollen in the anther ofLilium, 2. The function of the surrounding tissues in the formation of pollen and pollen wall. Acta Bot. Neerl. 29: 141–156.Google Scholar
  81. —— 1981. The function of the tapetal tissue during microsporogenesis inLilium. Acta Soc. Bot. Poloniae 50: 83–87.Google Scholar
  82. Saini, H. S. 1997. Effects of water stress on male gametophyte development in plants. Sexual Pl. Reprod. 10: 67–73.CrossRefGoogle Scholar
  83. — &S. Lalonde. 1998. Injuries to reproductive development under water stress, and their consequences for crop productivity. J. Crop Prod. 1: 223–248.Google Scholar
  84. Sangwan, R. S. &B. S. Sangwan-Norreel. 1987. Ultrastructural cytology of plastids in pollen grains of certain androgenic and nonandrogenic plants. Protoplasma 138: 11–22.CrossRefGoogle Scholar
  85. Schröder, M. B. 1985. Ultrastructural studies on plastids of generative cells inLiliaceae, 3. Plastid distribution during pollen development inGasteria verrucosa (Mill.) Duval. Protoplasma 124: 123–129.CrossRefGoogle Scholar
  86. Schumann, C. M. &S. M. Hancock. 1989. Paternal inheritance of plastids inMedicago sativa. Theor. Appl. Genet. 78: 863–866.CrossRefGoogle Scholar
  87. Sodmergen, H., T. Suzuki, S. Kawano, S. Nakamura, S. Tano &T. Kuroiwa. 1992. Behavior of organelle nuclei (nucleoids) in generative and vegetative cells during maturation of pollen inLilium longiflorum andPelargonium zonale. Protoplasma 168: 73–82.CrossRefGoogle Scholar
  88. —,Y. Y. Luo, T. Kuroiwa &S. Y. Hu. 1994. Cytoplasmic DNA apportionment and plastid differentiation during male gametophyte development inPelargonium zonale. Sexual Pl. Reprod. 7: 51–56.Google Scholar
  89. —,H. Bai, J. X. He, H. Kuroiwa, S. Kawano &T. Kuroiwa. 1998. Potential for biparental cytoplasmic inheritance inJasminum officinale andJasminum nudiflorum. Sexual Pl. Reprod. 65: 107–112.Google Scholar
  90. Speranza, A., G. L. Calzoni &E. Pacini. 1997. Occurrence of monoor disaccharides and polysaccharide reserves in mature pollen grains. Sexual Pl. Reprod. 10: 110–115.CrossRefGoogle Scholar
  91. Sun, C. S., S. C. Wu, C. C. Wang &C. C. Chu. 1979. The deficiency of soluble proteins and plastid ribosomal RNA in the albino plantlets of rice. Theor. Appl. Genet. 55: 193–197.CrossRefGoogle Scholar
  92. Sunderland, N. &B. Huang. 1985. Barley anther culture: The switch of programme and albinism. Hereditas (Lund), Suppl. 3: 27–40.CrossRefGoogle Scholar
  93. Takahashi, M. 1987. Development of omniaperturate pollen inTrillium kamtschaticum (Liliaceae). Amer. J. Bot. 74: 1842–1852.CrossRefGoogle Scholar
  94. Tanaka, I. 1991. Microtubule-determined plastids distribution during microsporogenesis inLilium longiflorum. J. Cell Sci. 99: 21–31.Google Scholar
  95. Taylor, P. E., K. Spuck, P. M. Smith, J. M. Sasse, T. Yokota, P. G. Griffiths &D. W. Cameron. 1993. Detection of brassinosteroids in pollen ofLolium perenne L. by immunocytochemistry. Planta 189: 91–100.Google Scholar
  96. Ting, J. T. L., S. S. H. Wu, C. Ratnayake &A. H. C. Huang. 1998. Constituents of tapetasomes and elaioplasts inBrassica campestris tapetum and their degradation and retention during microsporogenesis. Pl. J. 16(5): 541–551.CrossRefGoogle Scholar
  97. Wang, M., S. Hoekstra, S. van Bergen, G. E. M. Lamers, B. J. Oppedjik, W. dePriester &R. A. Schilperoort. 1999a. Apoptosis in developing anthers and the role of ABA in this process during androgenesis inHordeum vulgäre L. Pl. Molec. Biol. 39: 489–501.CrossRefGoogle Scholar
  98. —,S. van Bergen, G. E. M. Lamers, B. J. Oppedjik &R. A. Schilperoort. 1999b. Programmed cell death during androgenesis inHordeum vulgare L. Pp. 201–210in C. Clément, E. Pacini & J. C. Audran (eds.), Anther and pollen: From biology to biotechnology. Springer-Verlag, Berlin.Google Scholar
  99. Weber, M. 1992. The formation of pollenkitt inApium nodiflorum (Apiaceae). Ann. Bot. 70: 573–577.Google Scholar
  100. — 1996. The existence of a special exine coating inGeranium robertianum pollen. Int. J. Pl. Sci. 157: 195–202.CrossRefGoogle Scholar
  101. Wetzel, C. L. &W. A. Jensen. 1992. Studies of pollen maturation in cotton: The storage reserve accumulation phase. Sexual Pl. Reprod. 5: 117–127.Google Scholar
  102. Wheatley, J. M. 1977. Variations in the basic pathway of chloroplast development. New Phytol. 78: 407–420.CrossRefGoogle Scholar
  103. Xi, X. Y. 1991. Development and structure of pollen and embryo sac in Peanut (Arachis hypogaea L). Bot. Gaz. (Crawfordsville) 152: 164–172.CrossRefGoogle Scholar
  104. Zaki, M. A. &H. G. Dickinson. 1990. Structural changes during the first divisions of embryos resulting from anther and free microspore culture inBrassica napus. Protoplasma 156: 149–162.CrossRefGoogle Scholar
  105. Zavada, M. S. 1984. Pollen wall development inAustrobaileya maculata. Bot. Gaz. (Crawfordsville) 145: 11–21.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 2001

Authors and Affiliations

  • Christophe Clément
    • 1
  • Ettore Pacini
    • 2
  1. 1.Laboratoire de Biologie et Physiologie Végétales UFR SciencesUniversité de ReimsReims Cedex 2France
  2. 2.Dipartimento di Scienze AmbientaliUniversité degli Studi di SienaSienaItaly

Personalised recommendations