Archives of Pharmacal Research

, Volume 13, Issue 2, pp 192–197 | Cite as

Effect of Drug substances on the microviscosity of lipid bilayer of liposomal membrane

  • Suk Kyu Han
  • Jin-Suk Kim
  • Yong-Soo Lee
  • Min Kim
Original Articles


The microviscosities of the lipid bilayers of liposomal membranes of phospholipids were measured by the intermolecular excimer, formation method employing pyrene as a fluorescence probe, and the effects ofn-alkanols and other local anesthetics on the microviscosity were investigated. The results showed that then-alkanols and the other local anesthetics effectively lowered the microviscosity of the lipid bilayer of the dipalmitoyl phosphatidycholine liposomal membrane in proportion to the concentration of the additives. Moreover, there was a fairly good correlation between the local anesthetic activities and the microviscosity-lowering activities of these drugs. This results suggests that the nerveblocking activity of local anesthetics might have some relation with their activity fluidizing the lipid bilayer of biomembrane.


Microviscosity liposome phospholipid n-alkanols microviscosity-lowering activity anesthetic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatura Cited

  1. 1.
    Houslay, M.D. and Stanley, K.K.:Dynamics of Biological Membrane, John Wiley and Son, N.Y., (1982).Google Scholar
  2. 2.
    Guyton, A.C.:Medical Physiology, Saunders, N. Y., (1986).Google Scholar
  3. 3.
    Chapman, D.:Membrane Fluidity in Biology, Aloia, R.C. (Eds.), Academic Press, New York, (1983).Google Scholar
  4. 4.
    Silver, B.L.:Physical Chemistry of Membranes, The Solomon Press, New York, p. 75, (1985).Google Scholar
  5. 5.
    Lee, A.G.: Model for action of local anesthetics,Nature,262, 545 (1976).PubMedCrossRefGoogle Scholar
  6. 6.
    Hille, B.: Theories of anesthesia: general perturbations versus specific receptors. InMechanisms of Anesthesia, Flnk, B.R. (Eds.), Vol. 2, Progress in Anesthesiology, Raven Press, N. Y. p. 1, (1980).Google Scholar
  7. 7.
    Seeman, P.: The membrane actions of anesthetics and tranquilizers,Pharmacol. Rev. 24, 583 (1972).PubMedGoogle Scholar
  8. 8.
    Whetton, A.D., Houslay, M.D., Dodd, N.J.F. and Evans, W.H.: The lipid fluidity of rat liver membrane subfractions,Biochem. J. 214, 854 (1983).Google Scholar
  9. 9.
    Demediuk, P., Cowan, D.L. and Moscatelli,E.A.: Effects of plasmenylethanolamine on the dynamic properties of the hydrocarbon region of mixed phosphatidylcholine-phosphatidylethanolamine aqueous dispersions,Biochim. Biophys. Acta,730, 263 (1980).Google Scholar
  10. 10.
    Iwamoto, K. and Sunamoto, J.: Liposomal membranes. IX. Fluorescence depolarization studies on N-dansylhexadecylamine in liposomal bilayers,Bull. Chem. Sco. Jpn. 54, 399 (1981).CrossRefGoogle Scholar
  11. 11.
    Nakae, M. and Asada, S.: Interaction of quinidine with phospholipids. I. Effect on fluidity and permeability of phosphatidyl choline vesicles,Chem. Pharm. Bull.,34, 2146 (1972).Google Scholar
  12. 12.
    Chen, R.F. and Edelhoch, H.:Biochemical Fluorescence, Marcel Dekker, Inc., New York, p. 737, (1976).Google Scholar
  13. 13.
    Rudy, B. and Gitler, C.: Micorviscosities of the cell membrane,Biochim. Biophys. Acta. 288, 231 (1972).PubMedCrossRefGoogle Scholar
  14. 14.
    Foerster, T.:Excimers, Angew. Chem. Internat. Edit. 8, 333 (1969).CrossRefGoogle Scholar
  15. 15.
    Pownall, H.J. and Mith, L.C.: Viscosity of the hydrocarbon region of micelles by excimer fluorescence,J. Am. Chem. Soc. 95, 3136 (1973).CrossRefGoogle Scholar
  16. 16.
    Yalkowsky, S.H. and Zografi, G.: Calculation of partial molal volume in micellar systems,J. Pharm. Sci. 61 793 (1972).PubMedCrossRefGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 1990

Authors and Affiliations

  • Suk Kyu Han
    • 1
  • Jin-Suk Kim
    • 1
  • Yong-Soo Lee
    • 1
  • Min Kim
    • 1
  1. 1.Pusan National UniversityPusanKorea

Personalised recommendations