The Botanical Review

, Volume 64, Issue 4, pp 372–417 | Cite as

A critical review of concepts and methods used in classical genome analysis

  • Ole Seberg
  • Gitte Petersen


A short account of the development of classical genome analysis, the analysis of chromosome behaviour in metaphase I of meiosis, primarily in interspecific hybrids, is given. The application of the concept of homology to describe chromosome pairing between the respective chromosomes of a pair during meiosis is traced, and the relationship between this use of homology and the concept of homology as common ancestry is discussed at length. To equate the two concepts has led to the erroneous assumption that levels of chromosome pairing is an indication of phylogenetic relationship.

Even accepting the fundamental premises, genome analysis is burdened by observational difficulties. Hence, chromosome pairing has been shown to be under genetic control and is also influenced by environmental conditions. Additionally, basic biological observations such as the distribution of meiotic configurations or the identity of the individual chromosomes are frequently neglected.

Data from chromosome pairing are captured as pair-wise comparisons and are amenable only to phenetic analysis, and hence are not suited for phylogenetic inferences. As currently perceived, genome analysis may have a role to play in plant breeding but it has no place in systematics. With an increased knowledge and understanding of the mechanism behind meiosis, data useful in a systematic context may eventually be produced.


Genome Analysis Botanical Review Chromosome Pairing Synaptonemal Complex Meiotic Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ajimura, M., S.-H. Leem &H. Ogawa. 1992. Identification of new genes required for meiotic recombination inSaccharomyces cerevisiae. Genetics 133: 51–66.Google Scholar
  2. Alani, E., R. Padmore &N. Kleckner. 1990. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61: 419–436.PubMedCrossRefGoogle Scholar
  3. Alonso, L. C. &G. Kimber. 1981. The analysis of meiosis in hybrids. II. Triploid hybrids. Canad. J. Genet. Cytol. 23: 221–234.Google Scholar
  4. Asay, K. H. &D. R. Dewey. 1979. Bridging ploidy differences in crested wheatgrass with hexaploid × diploid hybrids. Crop Sci. 19: 519–523.Google Scholar
  5. Assadi, M. 1996. Experimental hybridization and genome analysis inElymus L. sect.Caespitosae and sect.Elytrigia (Poaceae: Triticeae). Pp. 23–38in R. R.-C. Wang et al. (eds.), Proceedings of the 2nd International Triticeae Symposium. Utah State University, Salt Lake City.Google Scholar
  6. Aung, T. &P. D. Walton. 1990. Morphology and cytology of the reciprocal hybrids betweenElymus trachycaulus andElymus canadensis. Genome 33: 123–130.Google Scholar
  7. Avivi, L. 1976. The effect of genes controlling different degrees of homoeologous pairing on quadrivalent frequency in induced autotetraploid lines ofTriticum longissimum. Canad. J. Genet. Cytol. 18: 357–364.Google Scholar
  8. Baden, C., R. von Bothmer, J. Flink &N. Jacobsen. 1989. Intergeneric hybridization betweenPsathyrostachys andHordeum. Nordic J. Bot. 9: 333–342.CrossRefGoogle Scholar
  9. Barkworth, M. E. 1992. Taxonomy of the Triticeae: a historical perspective. Hereditas 116:1–14.CrossRefGoogle Scholar
  10. — &D. R. Dewey. 1985. Genomically based genera in the perennial Triticeae of North America: identification and membership. Amer. J. Bot. 72: 767–776.CrossRefGoogle Scholar
  11. Baum, B. R., J. R. Estes &P. K. Gupta. 1987. Assessment of the genomic system of classification in the Triticeae. Amer. J. Bot. 74: 1388–1395.CrossRefGoogle Scholar
  12. Bayliss, M. W. &R. Riley, R. 1972. An analysis of temperature-dependent asynapsis inTriticum aestivum. Genet. Res., Camb. 20:193–200.Google Scholar
  13. Beasley, J. O. 1942. Meiotic chromosome behavior in species, species hybrids, haploids, and induced polyploids ofGossypium. Genetics 27: 25–54.PubMedGoogle Scholar
  14. Beer, C. G. 1980. Perspectives on animal behavior comparisons. Pp. 17–64in M. H. Bornstein (ed.), Comparative methods in psychology. Erlbaum, Hillsdale.Google Scholar
  15. Benavente, E. &J. Orellana. 1986. Pairing competition between identical and homologous chromosomes in diploid and tetraploid cells of rye telotrisomic plants. Canad. J. Genet. Cytol. 28: 568–573.Google Scholar
  16. Bennett, M. D. &H. Rees. 1970. Induced variation in chiasma frequency in rye in response to phosphate treatments. Genet Res., Camb. 16: 325–331.Google Scholar
  17. —,J. B. Smith &R. Kemble. 1972. The effect of temperature on meiosis and pollen development in wheat and rye. Canad. J. Genet. Cytol. 14: 615–624.Google Scholar
  18. Bishop, D. K., D. Park, L. Xu &N. Kleckner. 1992.DMC1: a meiosis-specific yeast homolog ofE. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69: 439–456.PubMedCrossRefGoogle Scholar
  19. Bothmer, R. von &N. Jacobsen. 1989. Intergeneric hybridization betweenHordeum andHordelymus (Poaceae). Nordic J. Bot. 9:113–117.CrossRefGoogle Scholar
  20. — &N. Jacobsen. 1991. Interspecific hybrids within the genusHordeum. Pp. 411–431in P. K. Gupta & T. Tsuchiya (eds.), Chromosome engineering in plants: genetics, breeding, evolution. Part A. Elsevier, Amsterdam.Google Scholar
  21. — &N. C. Subrahmanyam. 1988. Assessment of chromosome associations in haploids and their parental accessions inHordeum. Genome 30: 204–210.Google Scholar
  22. —,J. Flink, N. Jacobsen, M. Kotimäki &T. Landström. 1983. Interspecific hybridization with cultivated barley (Hordeum vulgare L.). Hereditas 99: 219–244.CrossRefGoogle Scholar
  23. —,M. Kotimäki &Z. Persson. 1985. Genome relationships between eight diploidHordeum species. Hereditas 103:1–16.CrossRefGoogle Scholar
  24. —,J. Flink &T. Landström. 1986. Meiosis in interspecificHordeum hybrids. I. Diploid combinations. Canad. J. Genet. Cytol. 28:525–535.Google Scholar
  25. —,——. 1987a. Meiosis inHordeum interspecific hybrids. II. Triploid hybrids. Evol. Trends Pl. 1:41–50.Google Scholar
  26. —,M. Kotimäki &I. Linde-Laursen. 1987b. Genome relationships betweenPsathyrostachys huashanica and P. fragilis (Poaceae). Pl. Syst. Evol. 156: 183–188.CrossRefGoogle Scholar
  27. —,J. Flink &T. Landström. 1988a. Meiosis in interspecificHordeum hybrids. III. Tetraploid (2x × 6x) hybrids. Hereditas 108:141–148.CrossRefGoogle Scholar
  28. —,——. 1988b. Meiosis in interspecificHordeum hybrids. IV. Tetraploid (4x × 4x) hybrids. Genome 30: 479–485.Google Scholar
  29. —,——. 1989a. Meiosis in interspecificHordeum hybrids. VI. Hexaploid hybrids. Evol. Trends Pl. 3: 53–58.Google Scholar
  30. —,—,— &H. M. Thomas. 1989b. Meiosis in interspecificHordeum hybrids. V. Pentaploid hybrids. Hereditas 110: 217–226.CrossRefGoogle Scholar
  31. —,B.-R. Lu, &I. Linde-Laursen. 1994. Intergeneric hybridization and C-banding patterns inHordelymus (Triticeae, Poaceae). Pl. Syst. Evol. 189: 259–266.CrossRefGoogle Scholar
  32. —,N. Jacobsen, C. Baden, R. B. Jørgensen &I. Linde-Laursen. 1995. An Ecogeographical study of the genusHordeum. Ed. 2. IPGRI, Rome.Google Scholar
  33. Brady, R. H. 1983. Parsimony, hierarchy, and biological implications. Pp. 49–60in N. I. Platnick & V. A. Funk (eds.), Advances in cladistics. Vol. 2. Columbia University Press, New York.Google Scholar
  34. Brandbam, P. E. &M. D. Bennett (eds.). 1995. Kew Chromosome Conference IV. Royal Botanic Gardens, Kew.Google Scholar
  35. Burson, B. L. 1978. Genome relations betweenPaspalum conspersum and two diploidPaspalum species. Canad. J. Genet. Cytol. 20: 365–372.Google Scholar
  36. —. 1981a. Cytogenetic relationships betweenPaspalumjurgensii andP. intermedium, P. vaginaturn, andP. setaceum var.ciliatifolium. Crop Sci. 21: 515–519.Google Scholar
  37. —. 1981b. Genome relations among four diploidPaspalum species. Bot. Gaz. 142: 592–596.CrossRefGoogle Scholar
  38. Chapman, C. G. D. &G. Kimber. 1992a. Developments in the meiotic analysis of hybrids. I. Review of theory and optimization in triploids. Heredity 68: 97–103.PubMedCrossRefGoogle Scholar
  39. ——. 1992b. Developments in the meiotic analysis of hybrids. II. Amended models for tetraploids. Heredity 68:105–113.PubMedCrossRefGoogle Scholar
  40. ——. 1992c. Developments in the meiotic analysis of hybrids. III. Amended models for pentaploids. Heredity 68:193–200.CrossRefGoogle Scholar
  41. ——. 1992d. Developments in the meiotic analysis of hybrids. IV. Utilizing datasets with merged figure classes. Heredity 68: 201–204.CrossRefGoogle Scholar
  42. ——. 1992e. Developments in the meiotic analysis of hybrids. V. Second-order models for tetraploids and pentaploids. Heredity 68: 205–210.CrossRefGoogle Scholar
  43. Charpentier, A., M. Feldman &Y. Cauderon. 1988. The effect of differentAgropyron elongatum chromosomes on pairing inAgropyron-common wheat hybrids. Genome 30: 978–983.Google Scholar
  44. Chatterjee, R. &G. Jenkins. 1993. Meiotic chromosome interactions in inbred autotetraploid rye (Secale cereale). Genome 36: 131–138.PubMedCrossRefGoogle Scholar
  45. Chen, Q., J. Jahier &Y. Cauderon. 1993. The B chromosome system of Inner MongolianAgropyron Gaertn. 2. Effects of the Bs on homologous and homoeologous meiotic chromosome pairing. Caryologia 46: 293–299.Google Scholar
  46. Chennaveeraiah, M. S. &S. C. Hiremath. 1974. Genome analysis ofEleusine coracana (L.) Gaertn. Euphytica 23:489–495.CrossRefGoogle Scholar
  47. ——. 1991. Cytogenetics of minor millets. Pp. 613–627in P. K. Gupta & T. Tsuchiya(eds.), Chromosome engineering in plants: genetics, breeding, evolution. Part A. Elsevier, Amsterdam.Google Scholar
  48. Cracraft, J. 1989. Speciation and its ontology: the empirical consequences of alternative species concepts for understanding patterns and processes of differentiation. Pp. 28–58in D. Orte & J. A. Endler (eds.), Speciation and its consequences. Sinauer Associates, Sunderland, MA.Google Scholar
  49. Crane, C. F. 1996. Numerical meiotic models for the inference of genomic affinity in polyploids. Pp. 61–79in P. P. Jauhar (ed.), Methods of genome analysis in plants. CRC Press, Boca Raton, FL.Google Scholar
  50. — &D. A. Sleper. 1989a. A model of meiotic chromosome association in triploids. Genome 32: 82–98.Google Scholar
  51. ——. 1989b. A model of meiotic chromosome association in tetraploids. Genome 32: 691–707.Google Scholar
  52. Cuadrado, C., C. Romero &J. R. Lacadena. 1991. Meiotic pairing control in wheat-rye hybrids. I. Effect of different wheat chromosome arms of homoeologous group 3 and 5. Genome 34: 72–75.Google Scholar
  53. Cuñado, N. 1992. Analysis of metaphase I chromosome association in species of the genusAegilops. Theor. Appl. Genet. 85:283–292.Google Scholar
  54. —,M. C. Cermeño &J. Orellana. 1986. Interactions between wheat, rye andAegilops ventricosa chromosomes on homologous and homoeologous pairing. Heredity 56: 219–226.CrossRefGoogle Scholar
  55. Darlington, C. D. 1932. The control of the chromosomes by the genotype and its bearing on some evolutionary problems. Amer. Naturalist 66: 25–51.CrossRefGoogle Scholar
  56. —. 1937. Recent advances in cytology. Ed. 2. J. & A. Churchill, London.Google Scholar
  57. Davies, A., G. Jenkins &H. Rees. 1990. Diploidisation ofLotus corniculatus L. (Fabaceae) by elimination of multivalents. Chromosoma 99:289–295.CrossRefGoogle Scholar
  58. Dewey, D. R. 1969. Hybrids between tetraploid and hexaploid crested wheatgrasses. Crop Sci. 9: 787–791.Google Scholar
  59. —. 1972a. Cytogenetic and genomic relationships ofElymus gigantgus withE. dasystachys andE. junceus. Bull. Torrey Bot. Club 99: 77–83.CrossRefGoogle Scholar
  60. —. 1972b. Cytogenetics ofElymus angustus and its hybrids withElymus giganteus, Elymus cinireus, andAgropyron repens. Bot. Gaz. 133: 57–64.CrossRefGoogle Scholar
  61. —. 1975. The origin ofAgropyron smithii. Amer. J. Bot. 62: 524–530.CrossRefGoogle Scholar
  62. —. 1980. Hybrids and induced amphiploids ofAgropyron repens × A. curvifolium. Crop Sci. 20: 473–478.Google Scholar
  63. —. 1982. Genomic and phylogenetic relationships among North American perennial Triticeae. Pp. 51–81in J. R. Estes et al. (eds.), Grasses and grasslands. University of Oklahoma Press, Norman.Google Scholar
  64. —. 1984. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. Pp. 209–279in J. P. Gustafson (ed.), Gene manipulation in plant improvement. Plenum Press, New York.Google Scholar
  65. Diez, M., M. M. Jiménez &J. L. Santos. 1993. Synaptic patterns of rye B chromosomes. II. The effect of the standard B chromosomes on the pairing of the A set Theor. Appl. Genet. 87:17–21.Google Scholar
  66. Digby, L. 1912. The cytology ofPrimula Kewensis and of other relatedPrimula-hybrids. Ann. Bot. 26: 357–388.Google Scholar
  67. Dover, G. A. 1973. The genetics and interactions of ‘A’ and ‘B’ chromosomes controlling meiotic chromosome pairing in the Triticinae. Pp. 653–666in E. R. Sears & L. M. S. Sears (eds.), Proceedings of the 4th International Wheat Genetics Symposium. Missouri Agriculture Experiment Station, Columbia, MO.Google Scholar
  68. — &R. Riley. 1972. Prevention of pairing of homoeologous meiotic chromosomes of wheat by an activity of supernumerary chromosomes ofAegilops. Nature 240: 159–161.CrossRefGoogle Scholar
  69. — &R. Riley. 1977. Inferences from genetical evidence on the course of meiotic chromosome pairing in plants. Phil. Trans. Roy. Soc. London, ser. B 277:313–326.CrossRefGoogle Scholar
  70. Driscoll, C. J., L. M. Bielig &N. L. Darvey. 1979. An analysis of frequencies of chromosome configurations in wheat and wheat hybrids. Genetics 91: 755–767.PubMedGoogle Scholar
  71. —,G. H. Gordon &G. Kimber. 1980. Mathematics of chromosome pairing. Genetics 95: 159–169.PubMedGoogle Scholar
  72. Dvorák, J. 1983. Evidence for genetic suppression of heterogenetic chromosome pairing in polyploid species ofSolanum, sect.Petota. Canad. J. Genet. Cytol. 25: 530–539.Google Scholar
  73. — 1987. Chromosomal distribution of genes in diploidElytrigia elongata that promote or suppress pairing of wheat homoeologous chromosomes. Genome 29: 34–40.Google Scholar
  74. Eldredge, N. &S. Gould. 1972. Punctuated equilibria, an alternative to phyletic gradualism. Pp. 82–115in T. M. J. Schopf (ed.), Models in paleobiology. Freeman Cooper, San Francisco.Google Scholar
  75. Elliott, C. G. 1955. The effect of temperature on chiasma frequency. Heredity 9:385–398.CrossRefGoogle Scholar
  76. Endrizzi, J. E., E. L. Turcotte &R. J. Kohel. 1984. Qualitative genetics, cytology, and cytogenetics. Pp. 81–129in R. J. Kohel & C. F. Lewis (eds.), Cotton. Agronomy Monograph no. 24. American Society of Agronomists, Madison, WI.Google Scholar
  77. —,——. 1985. Genetics, cytology, and evolution ofGossypium. Adv. Genet. 23: 271–375.CrossRefGoogle Scholar
  78. Engebrecht, J., J. Hirsch &G. S. Roeder. 1990. Meiotic gene conversion and crossing over: their relationship to each other and to chromosome synapsis and segregation. Cell 62:927–937.PubMedCrossRefGoogle Scholar
  79. Espinasse, A. &G. Kimber. 1981. The analysis of meiosis in hybrids. IV. Pentaploid hybrids. Canad. J. Genet. Cytol. 23: 627–638.Google Scholar
  80. —,J. Foueillassar &G. Kimber. 1995. Cytogenetical analysis of hybrids between sunflower and four wild relatives. Euphytica 82: 65–72.CrossRefGoogle Scholar
  81. Estilai, A. &P. F. Knowles. 1978. Relationship ofCarthamus leucocaulos to otherCarthamus species (Compositae). Canad. J. Genet. Cytol. 20:221–233.Google Scholar
  82. Evans, G. M. &A. J. Macefield. 1973. The effect of B chromosomes on homoeologous pairing in hybrid species. I.Lolium temulentum × Lolium perenne. Chromosoma 41: 63–73.CrossRefGoogle Scholar
  83. Farooq, S., N. Iqbal &T. M. Shah. 1990. Promotion of homoeologous chromosome pairing in hybrids ofTriticum aestivum × Aegilops variabilis. Genome 33: 825–828.Google Scholar
  84. Farris, J. S. 1979. The information content of the phylogenetic system. Syst. Zool. 28: 483–519.CrossRefGoogle Scholar
  85. —. 1981. Distance data in phylogenetic analysis. Pp. 3–23in V. A. Funk & D. R. Brooks (eds.), Advances in cladistics. Proceedings of the first meeting of the Willi Hennig Society. New York Botanical Garden, Bronx.Google Scholar
  86. —. 1983. The logical basis of phylogenetic analysis. Pp. 1–36in N. I. Platnick & V. A. Funk (eds.), Advances in cladistics. Vol. 2. Columbia University Press, New York.Google Scholar
  87. —. 1985. Distance data revisited. Cladistics 1: 67–85.Google Scholar
  88. Fedak, G. 1973. Increased chiasma frequency in desynaptic barley in response to phosphate treatments. Canad. J. Genet. Cytol. 15: 647–649.PubMedGoogle Scholar
  89. —. 1980. Production, morphology and meiosis of reciprocal barley-wheat hybrids. Canad. J. Genet. Cytol. 22:117–123.Google Scholar
  90. Federley, H. 1913. Das Verhalten der Chromosomen bei der Spermatogenese der SchmetterlingePygaera anachoreta, curtula undpicra sowie einiger ihrer Bastarde. Z. Indukt. Abstammungs-Vererbungsl 9: 1–100.CrossRefGoogle Scholar
  91. -. 1914. Ein Beitrag zur Kenntnis der Spermatogenese bei Mischlingen zwischen Eltern verschiedener systematischer Verwandtschaft. Oefvers. Förh. Finska Vetensk.-Soc. 56 Afd. A. No. 13: 1–28.Google Scholar
  92. -. 1915a. Chromosomenstudien an Mischlingen. Oefvers. Förh. Finska Vetensk.-Soc. 57 Afd. A. No. 26: 1–36.Google Scholar
  93. -. 1915b. Chromosomenstudien an Mischlingen. II. Die Spermatogenese des BastardsDicranura erminea (♀) ×D. vinula (♂). Oefvers. Förh. Finska Vetensk.-Soc. 57 Afd. A. No. 30: 1–26.Google Scholar
  94. Fedotova, Yu. S., Yu. F. Bogdanov, S. A. Gadzhiyeva, S. A. Sosnikhina, V. G. Smirnov &E. I. Mikhailova. 1994. Meiotic mutants of ryeSecale cereale L. II. The nonhomologous synapsis in desynaptic mutants sy7 and sy10. Theor. Appl. Genet. 88:1029–1036.CrossRefGoogle Scholar
  95. Feldman, M. 1977. Historical aspects and significance of the discovery of wild wheats. Stadler Genet. Symp. 9:121–146.Google Scholar
  96. Fernández-Calvín, B. &J. Orellana. 1994. Metaphase I-bound arms frequency and genome analysis in wheat-Aegilops hybrids. 3. Similar relationships between the B genome of wheat and the S or S1 genomes ofAe. speltoides, Ae. longissima andAe. sharonensis. Theor. Appl. Genet. 88:1043–1049.CrossRefGoogle Scholar
  97. —,— &D. Pignone. 1995. Genome analysis of triploids using mathematical models. I. Effects of translocations not detected by conventional staining techniques. Hereditas 122:41–45.CrossRefGoogle Scholar
  98. Frederiksen, S. 1991. Taxonomic studies inDasypyrum (Poaceae). Nordic J. Bot. 11: 135–142.CrossRefGoogle Scholar
  99. —. 1994. Hybridization betweenTaeniatherum caput-medusae andTriticum aestivum (Poaceae). Nordic J. Bot. 14: 3–6.CrossRefGoogle Scholar
  100. — &R. von Bothmer. 1986. Relationships inTaeniatherum (Poaceae). Canad. J. Bot. 64: 2343–2347.CrossRefGoogle Scholar
  101. ——. 1995. Intergeneric hybridizations withEremopyrum (Poaceae). Nordic J. Bot. 15: 39–47.CrossRefGoogle Scholar
  102. Gale, M. D. &T. E. Miller. 1987. The introduction of alien genetic variation in wheat. Pp. 173–210in F. G. H. Lupton (ed.), Wheat breeding. Chapman & Hall, London.Google Scholar
  103. Galindo, C. &N. Jouve. 1989. C-banding in meiosis: an approach to the study of wheat and rye genome interactions in triticale. Genome 32:1074–1078.Google Scholar
  104. Gaul, H. 1953. Genomanalytische Untersuchungen beiTriticum × Agropyrum intermedium unter Berücksichtigung vonSecale cereale × A. intermedium. Z. Indukt. Abstammungs-Vererbungsl. 85: 505–546.CrossRefGoogle Scholar
  105. —. 1954. Asynapsis und ihre Bedeutung für die Genomanalyse. Z. Indukt. Abstammungs-Vererbungsl. 86: 69–100.CrossRefGoogle Scholar
  106. —. 1959. A critical survey of genome analysis. Pp. 194–206in B. C. Jenkins (ed.), Proceedings of the 1st International Wheat Genetics Symposium. Public Press Limited, Winnipeg.Google Scholar
  107. Geerts, J. M. 1911. Cytologische Untersuchungen einiger Bastarde vonOenothera gigas. Ber. Deutsch. Bot. Ges. 29: 160–166.Google Scholar
  108. Gift, N. &P. F. Stevens. 1997. Vagaries in the delimitation of character states in quantitative variation—an experimental study. Syst. Biol. 46: 112–125.PubMedCrossRefGoogle Scholar
  109. Gill, B. S. &G. Kimber. 1989. Genome analysis in higher plants. Genome 31:1087.Google Scholar
  110. González, J. M., S. Bernard &M. Bernard. 1993. Metaphase-I analysis of aTriticum aestivum × T. monococcum hybrid by the C-banding technique. Euphytica 68: 187–192.CrossRefGoogle Scholar
  111. Goodspeed, T. H. 1954. The genusNicotiana. Origin, relationships and evolution of its species in the light of their distribution, morphology and cytogenetics. Chron. Bot. Co., Waltham, Mass.Google Scholar
  112. Goodwin, B. C. 1984. Changing from an evolutionary to a generative paradigm in biology. Pp. 99–120in J. W. Pollard (ed.), Evolutionary theory: paths into the future. Wiley, New York.Google Scholar
  113. Gottschalk, W. 1973. The genetic control of meiosis. Genetics 74, suppl. 2: 99.Google Scholar
  114. — &M. L. H. Kaul. 1980a. Asynapsis and desynapsis in flowering plants. I. Asynapsis. Nucleus 23: 1–15.Google Scholar
  115. ——. 1980b. Asynapsis and desynapsis in flowering plants. II. Desynapsis. Nucleus 23: 97–120.Google Scholar
  116. Grant, V. 1981. Plant speciation. Ed. 2. Columbia University Press, New York.Google Scholar
  117. Grell, R. F. 1969. Meiotic and somatic pairing. Pp. 361–492in E. W. Caspari & A. W. Ravin (eds.), Genetic organization. Academic Press, New York.Google Scholar
  118. Gupta, P. K. &G. Fedak. 1985. Genetic control of meiotic chromosome pairing in polyploids in the genusHordeum. Canad. J. Genet. Cytol. 27: 515–530.Google Scholar
  119. Harberd, D. J. 1972 Bivalent-forming natural autotetraploids in the Brassiceae. Heredity 29: 394.Google Scholar
  120. — &E. D. McArthur. 1980. Meiotic analysis of some species and genus hybrids in the Brassiceae. Pp. 65–87in S. Tsunoda et al. (eds.),Brassica crops and wild allies. Biology and breeding. Japan Scientific Societies Press, Tokyo.Google Scholar
  121. Hawley, R. S. &T. Arbel. 1993. Yeast genetics and the fall of the classical view of meiosis. Cell 72: 301–303.PubMedCrossRefGoogle Scholar
  122. Hempel, C. G. 1966. Philosophy of natural sciences. Prentice-Hall, Totowa, NJ.Google Scholar
  123. Henderson, S. A. 1962. Temperature and chiasma formation inSchistocerca gregaria. II. Cytological effects at 40°C and the mechanism of heat-induced univalence. Chromosoma 13:437–463.CrossRefGoogle Scholar
  124. —. 1963. Temperature and chiasma formation inSchistocerca gregaria. I. An analysis of the response at a constant 40°C. Heredity 18: 77–94.CrossRefGoogle Scholar
  125. Hewitt, G. M. 1967. An interchange which raises chiasma frequency. Chromosoma 21: 285–295.CrossRefGoogle Scholar
  126. — &B. John. 1965. The influence of numerical and structural chromosome mutations on chiasma conditions. Heredity 20:123–135.CrossRefGoogle Scholar
  127. Hillis, D. M. 1994. Homology in molecular biology. Pp. 339–368in B. K. Hall (ed.), Homology. The hierarchical basis of comparative biology. Academic Press, San Diego.Google Scholar
  128. Hollingsworth, N. M., L. Goetsch &B. Byers. 1990. TheHOP1 gene encodes a meiosis-specific component of yeast chromosomes. Cell 61:73–84.PubMedCrossRefGoogle Scholar
  129. Holm, P. B. 1986. Chromosome pairing and chiasmata formation in allohexaploid wheat,Triticum aestivum analyzed by spreading of meiotic nuclei. Carlsberg Res. Commun. 51:239–294.CrossRefGoogle Scholar
  130. — &S. W. Rasmussen. 1984. The synaptonemal complex in chromosome pairing and disjunction. Chromosomes Today 8:104–116.Google Scholar
  131. — &X. Wang. 1988. The effect of chromosome 5B on synapsis and chiasma formation in wheat,Triticum aestivum cv. Chinese Spring. Carlsberg Res. Commun. 53:191–208.CrossRefGoogle Scholar
  132. Hossain, M. G. 1978. Effects of external environmental factors on chromosome pairing in autotetraploid rye. Cytologia 43: 21–34.Google Scholar
  133. Hovin, A. W. 1958. Meiotic chromosome pairing in amphihaploidPoa annua L. Amer. J. Bot. 45: 131–138.CrossRefGoogle Scholar
  134. Hull, D. L. 1980. Individuality and selection. Ann. Rev. Ecol. Syst. 11: 311–332.CrossRefGoogle Scholar
  135. Huskins, C. L. 1932. A cytological study of Vilmorin’s unfixable dwarf wheat. J. Genet. 25:113–124.Google Scholar
  136. Hutchinson, J., V. Chapman &T. E. Miller. 1980. Chromosome pairing at meiosis in hybrids betweenAegilops andSecale species: a study byin situ hybridisation using cloned DNA. Heredity 45: 245–254.CrossRefGoogle Scholar
  137. —,T. E. Miller &S. M. Reader. 1983. C-banding at meiosis as a means of assessing chromosome affinities in the Triticeae. Canad. J. Genet. Cytol. 25: 319–323.Google Scholar
  138. Hymovitz, T., R. G. Palmer &R. J. Singh. 1991. Cytogenetics of the genusGlycine. Pp. 53–63in T. Tsuchiya & P. K. Gupta (eds.), Chromosome engineering in plants: genetics, breeding, evolution. Part B. Elsevier, Amsterdam.Google Scholar
  139. Ikeda, N. &S. Ono. 1991. Cytogenetics of the genusMentha. Pp. 565–580in T. Tsuchiya & P. K. Gupta (eds), Chromosome engineering in plants: genetics, breeding, evolution. Part B. Elsevier, Amsterdam.Google Scholar
  140. Ivanov, E. L., V. G. Korolev &F. Fabre. 1992.XRS2, a DNA repair gene ogSaccharomyces cerevisiae, is needed for meiotic recombination. Genetics 132: 651–664.PubMedGoogle Scholar
  141. Jackson, R. C. 1982. Polyploidy and diploidy: new perspectives on chromosome pairing and its evolutionary implications. Amer. J. Bot 69:1512–1523.CrossRefGoogle Scholar
  142. —. 1984. Chromosome pairing in species and hybrids. Pp. 67–86in W. F. Grant (ed.), Plant biosystematics. Academic Press, Toronto.Google Scholar
  143. —. 1991. Cytogenetics of polyploids and their diploid progenitors. Pp. 159–180in P. K. Gupta & T. Tsuchiya (eds.), Chromosome engineering in plants: genetics, breeding, evolution. Part A. Elsevier, Amsterdam.Google Scholar
  144. — &J. Casey. 1982. Cytogenetic analyses of autopolyploids: models and methods for triploids to octoploids. Amer. J. Bot. 69: 487–501.CrossRefGoogle Scholar
  145. — &D. P. Hauber. 1982. Autotriploid and autotetraploid analyses: correction coefficients for proposed binomial models. Amer. J. Bot. 69: 644–646.CrossRefGoogle Scholar
  146. Jauhar, P. P. 1968. Inter-and intra-genomal chromosome pairing in an interspecific hybrid and its bearing on basic chromosome number inPennisetum. Genetica 39: 360–370.CrossRefGoogle Scholar
  147. —. 1975a. Chromosome relationships betweenLolium andFestuca (Gramineae). Chromosoma (Berlin) 52: 103–121.CrossRefGoogle Scholar
  148. —. 1975b. Genetic control of diploid-like meiosis in hexaploid tall fescue. Nature 254: 595–597.PubMedCrossRefGoogle Scholar
  149. —. 1977. Genetic regulation of diploid-like chromosome pairingin Avena. Theor. Appl. Genet. 49: 287–295.CrossRefGoogle Scholar
  150. —. 1981. Cytogenetics of pearl millet. Adv. Agron. 34: 407–479.CrossRefGoogle Scholar
  151. —. 1988. A reassessment of genome relationships betweenThinopyrum bessarabicum andT. elongatum of the Triticeae. Genome 30: 903–914.Google Scholar
  152. —. 1996. Methods of genome analysis in plants. CRC Press, Boca Raton, FL.Google Scholar
  153. — &C. F. Crane. 1989. An evaluation of Baum et al.’s assessment of the genomic system of classification in the Triticeae. Amer. J. Bot. 76: 571–576.CrossRefGoogle Scholar
  154. — &L. R. Joppa. 1996. Chromosome pairing as a tool in genome analysis: merits and limitations. Pp. 9–37in P. P. Jauhar (ed.), Methods of genome analysis in plants. CRC Press, Boca Raton, FL.Google Scholar
  155. Jenkins, G. 1985. Synaptonemal complex formation in hybrids ofLolium temulentum × Lolium perenne (L.). I. High chiasma frequency diploid. Chromosoma 92: 81–88.CrossRefGoogle Scholar
  156. —. 1986. Synaptonemal complex formation in hybrids ofLolium temulentum × Lolium perenne (L.). III. Tetraploid. Chromosoma 93:413–419.CrossRefGoogle Scholar
  157. —,J. White &J. S. Parker. 1988. Elimination of multivalents during meiotic prophase inScilla autumnalis. II. Tetraploid. Genome 30: 940–946.Google Scholar
  158. John, B. 1990. Meiosis. Cambridge University Press, Cambridge.Google Scholar
  159. — &M. King. 1985. The inter-relationship between heterochromatin distribution and chiasma distribution. Genetica 66:183–194.CrossRefGoogle Scholar
  160. — &B. Naylor. 1961. Anomalous chromosome behaviour in the germ line ofSchistocerca gregaria. Heredity 16:187–198.CrossRefGoogle Scholar
  161. Johzuka, K. &H. Ogawa. 1995. Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation inSaccharomyces cerevisiae. Genetics 139: 1521–1532.PubMedGoogle Scholar
  162. Jones, R. N. 1991. Cytogenetics of B-chromosomes in crops. Pp. 141–157in P. K. Gupta & T. Tsuchiya (eds.), Chromosome engineering in plants: genetics, breeding, evolution. Part A. Elsevier, Amsterdam.Google Scholar
  163. — &H. Rees. 1982. B-chromosomes. Academic Press, London.Google Scholar
  164. Jouve, N., N. Diez &M. Rodriguez. 1980. C-banding in 6x-Triticale ×Secale cereale L. hybrid cytogenetics. Theor. Appl. Genet 57: 75–79.CrossRefGoogle Scholar
  165. —,D. Montalvo &C. Soler. 1982. C-banding in cytogenetics of 6x-Triticale xTriticum aestivum L. hybrids. Z. Pflanzenzüchtg. 88:311–321.Google Scholar
  166. —,J. M. Gonzalez, A. Fominaya &E. Ferrer. 1985. The analysis of meiosis of the B genome in common wheat. Canad. J. Genet. Cytol. 27:17–22.Google Scholar
  167. Kaul, M. L. H. &T. G. K. Murthy. 1985. Mutant genes affecting higher plant meiosis. Theor. Appl. Genet. 70:449–466.CrossRefGoogle Scholar
  168. Kellogg, E. A. 1989. Comments on genomic genera in the Triticeae (Poaceae). Amer. J. Bot. 76: 796–805.CrossRefGoogle Scholar
  169. Kihara, H. 1924. Cytologische und genetische Studien bei wichtigen Getreidearten mit besonderer Rücksicht auf das Verhalten der Chromosomen und die Sterilität in den Bastarden. Mem. Coll. Sci. Kyoto Imp. Univ., ser. B 1:1–200.Google Scholar
  170. —. 1929. Conjugation of homologous chromosomes in the genus hybridsTriticum × Aegilops and species hybrids ofAegilops. Cytologia 1:1–15.Google Scholar
  171. —. 1930. Genomanalyse beiTriticum undAegilops, Cytologia 1: 263–284.Google Scholar
  172. — &F. Lilienfeld. 1932. Genomanalyse beiTriticum undAegilops. IV. Untersuchungen anAegilops ×Triticum- undAegilops x Aegilops-Bastarden. Cytologia 3: 384–456.Google Scholar
  173. — &T. Ono. 1926. Chromosomenzahlen und Systematische Gruppierung der Rumex-Arten. Z. Zellforsch. Mikrosk. Anat. 4: 475–481.CrossRefGoogle Scholar
  174. Kimber, G. 1961. Basis of the diploid-like meiotic behaviour of polyploid cotton. Nature 191:98–100.CrossRefGoogle Scholar
  175. —. 1983. Genome analysis in the genusTriticum. Pp. 23–28in S. Sakamoto (ed.), Proceedings of the 6th International Wheat Genetics Symposium. Plant Germplasm Institute, Kyoto University, Kyoto.Google Scholar
  176. —. 1984. Evolutionary relationships and their influence on plant breeding. Pp. 281–293in J. P. Gustafson (ed.), Gene manipulation in plant improvement. Plenum Press, New York.Google Scholar
  177. —. 1986. The use of patterns in the study of the evolution of allopolyploids. Pp. 61–70in C. Barigozzi (ed.), The origin and domestication of cultivated plants. Elsevier, Amsterdam.Google Scholar
  178. — &L. C. Alonso. 1981. The analysis of meiosis in hybrids. III. Tetraploid hybrids. Canad. J. Genet. Cytol. 23: 235–254.Google Scholar
  179. — &M. Feldman. 1987. Wild wheat. An introduction. Special Report 353, College of Agriculture. University of Missouri, Columbia.Google Scholar
  180. — &M. M. Hulse. 1979. The analysis of chromosome pairing in hybrids and the evolution of wheat. Pp. 63–72in S. Ramanujam (ed.), Proceedings of the 5th International Wheat Genetics Symposium. Indian Society for Genetics and Plant Breeding, New Delhi.Google Scholar
  181. — &Y. Yen. 1990. Genomic analysis of diploid plants. Proc. Natl. Acad. Sci. U.S.A. 87: 3205–3209.PubMedCrossRefGoogle Scholar
  182. —,L. C. Alonso &P. J. Sallee. 1981. The analysis of meiosis in hybrids. I. Aneuploid hybrids. Canad. J. Genet. Cytol. 23:209–219.Google Scholar
  183. King, I. P., K. A. Purdie, S. E. Orford, S. M. Reader &T. E. Miller. 1993. Detection of homoeologous chiasma formation inTriticum durum × Thinopyrum bessarabicum hybrids using genomicin situ hybridization. Heredity 71: 369–372.CrossRefGoogle Scholar
  184. —,S. M. Reader, K. A. Purdie, S. E. Orford &T. E. Miller. 1994. A study of the effect of a homoeologous pairing promoter on chromosome pairing in wheat/rye hybrids using genomic in situ hybridization. Heredity 72: 318–321.CrossRefGoogle Scholar
  185. Kobayashi, T., Y. Hotta &S. Tabata. 1993. Isolation and characterization of a yeast gene that is homologous with a meiosis-specific cDNA from a plant Molec. Gen. Genet. 237: 225–232.CrossRefGoogle Scholar
  186. Koduru, P. R. K. &M. K. Rao. 1981. Cytogenetics of synaptic mutants in higher plants. Theor. Appl. Genet. 59:197–214.Google Scholar
  187. Kopyto, R., C. F. Crane &D. A. Sleper. 1989. Effect of temperature on meiosis and fertility inFestuca mairei × Festuca arundinacea var.glaucescens. Genome 32: 708–718.Google Scholar
  188. Kostoff, D. 1941a. The problem of haploidy. (Cytogenetic studies onNicotiana haploids and their bearings to some other cytogenetic problems.). Bibl. Genet. 13:1–148.Google Scholar
  189. —. 1941b. Wheat phylesis and wheat breeding from a cytogenetic point of view. (Cytogenetic indices for the rôle of interspecific hybridization in the origin of wheat species and for applying interspecific hybridization in producing valuable wheat forms.). Bibl. Genet. 13: 149–224.Google Scholar
  190. —. 1943. Cytogenetics of the genusNicotiana. State’s Printing House, Sofia.Google Scholar
  191. Kumar, H. 1991. Cytogenetics of safflower. Pp. 251–277in T. Tsuchiya & P. K. Gupta (eds.), Chromosome engineering in plants: genetics, breeding, evolution. Part B. Elsevier, Amsterdam.Google Scholar
  192. Ladizinsky, G. 1973. Genetic control of bivalent pairing in theAvena strigosa polyploid complex. Chromosoma 42:105–110.PubMedCrossRefGoogle Scholar
  193. Lauder, G. V. 1994. Homology, form, and function. Pp. 151–196in B. K. Hall (ed.), Homology. The hierarchical basis of comparative biology. Academic Press, San Diego.Google Scholar
  194. Law, C. N. 1963. An effect of potassium on chiasma frequency and recombination. Genetica 33: 313–329.CrossRefGoogle Scholar
  195. Lelley, T. 1975. Identification of univalents and rod bivalents in Triticale with Giemsa. Z. Pflanzenzüchtg. 75: 252–256.Google Scholar
  196. —. 1976. Induction of homoeologous pairing in wheat by genes of rye suppressing chromosome 5B effect. Canad. J. Genet. Cytol. 18: 485–489.Google Scholar
  197. Lilienfeld, F. A. 1951. H. Kihara: genome-analysis inTriticum andAegilops. X. Concluding review. Cytologia 16: 101–123.Google Scholar
  198. Lin, Y. J. 1982. Temperature and chiasma formation inRhoeo spathacea var.variegata. Genetica 60: 25–30.CrossRefGoogle Scholar
  199. Liu, Z.-W. &R. R.-C. Wang. 1993. Genomic constitutions ofThinopyrum curvifolium, T. scirpeum, T. distichum, andT. junceum (Triticeae: Gramineae). Genome 36: 641–651.PubMedCrossRefGoogle Scholar
  200. Loidl, J. 1989. Effects of elevated temperature on meiotic chromosome synapsis inAllium ursinum. Chromosoma 97: 449–458.CrossRefGoogle Scholar
  201. —. 1990. The initiation of meiotic chromosome pairing: the cytological view. Genome 33: 759–778.PubMedGoogle Scholar
  202. —. 1994. Cytological aspects of meiotic recombination. Experientia 50: 285–294.PubMedCrossRefGoogle Scholar
  203. Löve, Á. 1982. Generic evolution of the wheatgrasses. Biol. Zentralbl. 101:199–212.Google Scholar
  204. — 1984. Conspectus of the Triticeae. Feddes Repert. 95: 425–521.Google Scholar
  205. — 1986. Some taxonomical adjustments in eurasiatic wheatgrasses. Veröff. Geobot. Inst. Rübel Zürich 87: 43–52.Google Scholar
  206. — &H. E. Connor. 1982. Relationships and taxonomy of New Zealand wheatgrasses. New Zealand J. Bot. 20: 169–186.Google Scholar
  207. Lu, B.-R. 1993a. Genomic relationships within theElymus parviglumis group (Triticeae: Poaceae). Pl. Syst. Evol. 187: 191–211.CrossRefGoogle Scholar
  208. —. 1993b. Biosystematic investigations of Asiatic wheatgrasses—Elymus L. (Triticeae: Poaceae). Ph.D. dissertation, Swedish University of Agricultural Science, Svalöv.Google Scholar
  209. — &B. Salomon. 1993. Two new Tibetan species ofElymus (Poaceae: Triticeae) and their genomic relationships. Nordic J. Bot 13:353–367.CrossRefGoogle Scholar
  210. — &R. von Bothmer. 1993a. Genomic constitution of four Chinese endemicElymus species:E. brevipes, E. yangii, E. anthosachnoides, andE. altissimus (Triticeae, Poaceae). Genome 36: 863–876.PubMedCrossRefGoogle Scholar
  211. —. 1993b. Meiotic analysis ofElymus caucasicus, E. longearistatus, and their interspecific hybrids with twenty-threeElymus species (Triticeae, Poaceae). Pl. Syst. Evol. 185: 35–53.CrossRefGoogle Scholar
  212. —,K. B. Jensen &B. Salomon. 1993. Biosystematic study of hexaploidsElymus tschimganicus andE. glaucissimus. II. Interspecific hybridization and genomic relationship. Genome 36: 1157–1168.PubMedCrossRefGoogle Scholar
  213. —,M. E. B. Naredo, A. B. Juliano &M. T. Jackson. 1997. Hybridization of AA genome rice species from Asia and Australia. II. Meiotic analysis ofOryza meridionalis and its hybrids. Genet. Res. Crop Evol. 44: 25–31.CrossRefGoogle Scholar
  214. Lucas, H. &J. Jahier. 1987. Differences in meiotic pairing induction between the A genomes ofTriticum boeoticum Boiss. andT. urartu Tum. using diploid species of the subtribe Triticineae as analysers. Genome 29: 891–893.Google Scholar
  215. Majisu, B. N. &J. K. Jones. 1971.Aegilops × Secale hybrids: the production and cytology of diploid hybrids. Genet. Res., Cambridge 17: 17–31.Google Scholar
  216. Matsubayashi, M. 1991. Phylogenetic relationships in the potato and its relatives. Pp. 93–118in T. Tsuchiya & P. K. Gupta (eds.), Chromosome engineering in plants: genetics, breeding, evolution. Part B. Elsevier, Amsterdam.Google Scholar
  217. Menees, T. M., P. B. Ross-MacDonald &G. S. Roeder. 1992.MEI4, ameiosis-specific yeast gene required for chromosome synapsis. Molec. Cell. Biol. 12:1340–1351.PubMedGoogle Scholar
  218. Menzel, M. Y. &D. W. Martin. 1970. Genome affinities of four African diploid species ofHibiscus sect.Furcaria. J. Hered. 61: 179–184.Google Scholar
  219. — &F. D. Wilson. 1966. Hybrids and genome relations ofHibisous sabdariffa, H. meeusei, H. radiatus andH. acetosella. Amer. J. Bot. 53: 270–275.CrossRefGoogle Scholar
  220. Mishler, B. D. &R. N. Brandon. 1987. Individuality, pluralism, and the phylogenetic species concept. Biol. Philos. 2:37–54.CrossRefGoogle Scholar
  221. Mizushima, U. 1980. Genome analysis inBrassica and allied genera. Pp. 89–106in S. Tsunoda et al. (eds.),Brassica crops and wild allies. Biology and breeding. Japan Scientific Societies Press, Tokyo.Google Scholar
  222. Montgomery, T. H. 1901. A study of the chromosomes of the germ cells of Metazoa. Trans. Amer. Phil. Soc. Philadelphia 20:154–236.CrossRefGoogle Scholar
  223. Moritz, C. &D. M. Hillis. 1996. Molecular systematics: context and controversies. Pp. 1–13in D. M. Hillis et al. (eds.), Molecular systematics. Sinauer Associates, Sunderland, MA.Google Scholar
  224. Motsny, I. I. &V. K. Simonenko. 1996. The influence ofElymus sibiricus L. genome on the diploidization system of wheat. Euphytica 91: 189–193.Google Scholar
  225. Nag, D. K., H. Scherthan, B. Rockmill, J. Bhargava &G. S. Roeder. 1995. Heteroduplex DNA formation and homologous pairing in yeast meiotic mutants. Genetics 141: 75–86.PubMedGoogle Scholar
  226. Nayar, N. M. 1973. Origin and cytogenetics of rice. Adv. Genet. 17: 153–292.CrossRefGoogle Scholar
  227. Nelson, G. 1989. Species and taxa: systematics and evolution. Pp. 60–81in D. Otte & J. A. Endler (eds.), Speciation and its consequences. Sinauer Associates, Sunderland, MA.Google Scholar
  228. —. 1994. Homology and systematics. Pp. 101–149in B. K. Hall (ed.), Homology: the hierarchical basis of comparative biology. Academic Press, San Diego.Google Scholar
  229. Nezu, M., T. C. Katayama &H. Kihara. 1960. Genetic study of the genusOryza. I. Crossability and chromosomal affinity among 17 species. Seiken Zihô 11: 1–11.Google Scholar
  230. Nishiyama, I., T. Yabuno &T. Taira. 1989. Genomic affinity relationships in the genusAvena. Pl. Breed. (New York) 102:22–30.Google Scholar
  231. Oehlkers, F. 1940. Meiosis und crossing over. Biol. Zentralbl. 60: 337–348.Google Scholar
  232. Ohta, S. 1991. Phylogenetic relationships ofAegilops mutica Boiss. with the diploid species of congenericAegilops-Triticum complex, based on the new method of genome analysis using its B-chromosomes. Mem. Coll. Agric. Kyoto Univ. 137:1–116.Google Scholar
  233. — &M. Tanaka. 1983. Genome relationships betweenAe. mutica and the other diploidAegilops andTriticum species, based on the chromosome pairing in the hybrids with or without B-chromosomes. Pp. 983–991in S. Sakamoto (ed.), Proceedings of the 6th International Wheat Genetics Symposium. Plant Germplasm Institute, Kyoto University, Kyoto.Google Scholar
  234. Okamoto, M. 1957. Asynaptic effect of chromosome V. Wheat Inf. Serv. 5: 6.Google Scholar
  235. Orellana, J. 1985. Most of the homoeologous pairing at metaphase I in wheat-rye hybrids is not chiasmatic. Genetics 111: 917–931.PubMedGoogle Scholar
  236. —,N. Cuñado &M. C. Cermeño. 1985. Genome-specific control of meiotic pairing evidenced in mutantAegilops ventricosa-Secale cereale amphidiploids. Theor. Appl. Genet. 71: 532–535.CrossRefGoogle Scholar
  237. —,J. F. Vazquez &J. M. Carrillo. 1989. Genome analysis in wheat-rye-Aegilopscaudata trigeneric hybrids. Genome 32: 169–172.Google Scholar
  238. Pantulu, J. V. &M. K. Rao. 1982. Cytogenetics of pearl millet. Theor. Appl. Genet. 61: 1–17.CrossRefGoogle Scholar
  239. Parker, J. S. 1975. Chromosome-specific control of chiasma formation. Chromosoma 49: 91–406.CrossRefGoogle Scholar
  240. —,R. W. Palmer, M. A. F. Whitehorn &L. A. Edgar. 1982. Chiasma frequency effects of structural chromosome change. Chromosoma 85: 673–686.CrossRefGoogle Scholar
  241. —,G. H. Jones, L. A. Edgar &C. Whitehouse. 1990. The population cytogenetics ofCrepis capillaris. III. B-chromosome effects on meiosis. Heredity 64: 377–385.CrossRefGoogle Scholar
  242. Patterson, C. 1982. Morphological characters and homology. Pp. 21–74in K. A. Joysey & A. E. Friday (eds.), Problems of phylogenetic reconstruction. Academic Press, London.Google Scholar
  243. —. 1988. Homology in classical and molecular biology. Molec. Biol. Evol. 5: 603–625.PubMedGoogle Scholar
  244. Pellew, C. &F. M. Durham. 1916. The genetic behaviour of the hybridPrimula kewensis, and its allies. J. Genet. 5:159–182.Google Scholar
  245. Petersen, G. 1991. Intergeneric hybridization betweenHordeum andSecale. II. Analysis of meiosis in hybrids. Hereditas 114: 141–159.CrossRefGoogle Scholar
  246. — &O. Seberg. 1996. Genomes, chromosomes, and genes and the concept of homology. Pp. 13–19in R. R.-C. Wang et al. (eds.), Proceedings of the 2nd International Triticeae Symposium. Utah State University, Salt Lake City.Google Scholar
  247. Phillips, L. L. 1966. The cytology and phylogenetics of the diploid species ofGossypium. Amer. J. Bot. 53: 328–335.CrossRefGoogle Scholar
  248. Pickering, R. 1990. The influence of temperature on chromosome pairing in diploid and triploid hybrids betweenHordeum vulgare L. andH. bulbosum L. Hereditas 113: 221–226.CrossRefGoogle Scholar
  249. Prakash, S. &V. L. Chopra. 1991. Cytogenetics of cropBrassicas and their allies. Pp. 161–180in T. Tsuchiya & P. K. Gupta (eds.), Chromosome engineering in plants: genetics, breeding, evolution. Part B. Elsevier, Amsterdam.Google Scholar
  250. Prakken, R. 1943. Studies of asynapsis in rye. Hereditas 29: 475–495.CrossRefGoogle Scholar
  251. Rajhathy, T. 1991. The chromosomes ofAvena. Pp. 449–467in P. K. Gupta & T. Tsuchiya (eds.), Chromosome engineering in plants: genetics, breeding, evolution. Part A. Elsevier, Amsterdam.Google Scholar
  252. Rees, H. 1957. Distribution of chiasmata in an ‘asynaptic’ locust. Nature 180: 559.PubMedCrossRefGoogle Scholar
  253. —. 1961. Genotypic control of chromosome form and behaviour. Bot. Rev. (Lancaster) 27: 288–318.Google Scholar
  254. Reyes-Valdés, M. H., Y. Ji, C. F. Crane, J. F. Taylor, M. N. Islam-Faridi, H. J. Price &D. M. Stelly. 1996. ISH-faciliated analysis of meiotic bivalent pairing. Genome 39: 784–792.PubMedCrossRefGoogle Scholar
  255. Rhoades, M. M. &E. Dempsey. 1973. Chromatin elimination induced by the B chromosome of maize. J. Hered. 64:12–18.Google Scholar
  256. Rieppel, O. 1994. Species and history. Pp. 31–50in R. W. Scotland et al. (eds.), Models in phytogeny reconstruction. Clarendon Press, Oxford.Google Scholar
  257. Riley, R. 1960. The diploidisation of polyploid wheat. Heredity 15: 407–429.CrossRefGoogle Scholar
  258. — &V. Chapman. 1958. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182: 713–715.CrossRefGoogle Scholar
  259. — &C. N. Law. 1965. Genetic variation in chromosome pairing. Adv. Genet. 13: 57–114.CrossRefGoogle Scholar
  260. Rockmill, B. &G. S. Roeder. 1990. Meiosis in asynaptic yeast. Genetics 126: 563–574.PubMedGoogle Scholar
  261. —,J. Engebrecht, H. Scherthan, J. Loidl &G. S. Roeder. 1995. The yeastMER2 gene is required for chromosome synapsis and the initiation of meiotic recombination. Genetics 141:49–59.PubMedGoogle Scholar
  262. Rosenberg, O. 1903. Das Verhalten der Chromosomen in einer hybriden Pflanze. Ber. Deutsch. Bot. Ges. 21: 110–119.Google Scholar
  263. —. 1904a. Über die Tetradenteilung einesDrosera-Bastardes. Ber. Deutsch. Bot. Ges. 22: 47–53.Google Scholar
  264. —. 1904b. Über die Reduktionsteilung inDrosera. Meddeland. Stockholms Hogskolas Bot. Inst. Kungl. Hofboktryckeriet, Stockholm.Google Scholar
  265. —. 1909. Cytologische und morphologische Studien anDrosera longifolia × rotundifolia. Kongl. Svenska Vetenskapsakad. Handl. 43:1–65.Google Scholar
  266. —. 1917. Die Reduktionsteilung und ihre Degeneration inHieracium. Svensk Bot. Tidskr. 11: 145–206.Google Scholar
  267. Roth, V. L. 1991. Homologies and hierarchies: problems solved and unresolved. J. Evol. Biol. 4: 167–194.CrossRefGoogle Scholar
  268. Sakamoto, S. 1972. Intergeneric hybridisation betweenEremopyrum orientale andHenrardia persica, an example of polyploid species formation. Heredity 28:109–115.CrossRefGoogle Scholar
  269. —. 1974. Intergeneric hybridization among three species ofHeteranthelium, Eremopyrum andHordeum, and its significance for the genetic relationships within the tribe Triticeae. New Phytol. 73: 341–350.CrossRefGoogle Scholar
  270. —. 1991. The cytogenetic evolution of Triticeae grasses. Pp. 469–481in P. K. Gupta & T. Tsuchiya (eds.), Chromosome engineering in plants: genetics, breeding, evolution. Part A. Elsevier, Amsterdam.Google Scholar
  271. Salomon, B. 1993. Interspecific hybridizations in theElymus semicostatus group (Poaceae). Genome 36: 899–905.PubMedCrossRefGoogle Scholar
  272. — &B.-R. Lu. 1992. Genomic groups, morphology, and sectional delimitations in EurasianElymus (Poaceae, Triticeae). Pl. Syst. Evol. 180:1–13.CrossRefGoogle Scholar
  273. ——. 1994. Interspecific hybridization among species of theElymus semicostatus andElymus tibeticus groups (Poaceae). Pl. Syst. Evol. 189: 1–13.CrossRefGoogle Scholar
  274. Sano, J. &M. Tanaka. 1983.Aegilops speltoides as a useful tool for genome analysis in wheat. Pp. 1095–1101in S. Sakamoto (ed.), Proceedings of the 6th International Wheat Genetics Symposium. Plant Germplasm Institute, Kyoto University, Kyoto.Google Scholar
  275. Sax, K. 1922. Sterility in wheat hybrids. II. Chromosome behavior in partially sterile hybrids. Genetics 7: 513–552.PubMedGoogle Scholar
  276. Sears, E. R. 1976. Genetic control of chromosome pairing in wheat. Ann. Rev. Genet. 10: 31–51.PubMedCrossRefGoogle Scholar
  277. — &M. Okamoto. 1958. Intergenomic chromosome relationships in hexaploid wheat. Proc. 10th Int. Congr. Genet. 2: 258–259.Google Scholar
  278. Seberg, O. 1989. Genome analysis, phylogeny, and classification. Pl. Syst. Evol. 166:159–171.CrossRefGoogle Scholar
  279. Sficas, A. G. &D. U. Gerstel. 1962. Statistical analysis of chromosome pairing in interspecific hybrids. II. Applications to someNicotiana hybrids. Genetics 47: 1171–1185.PubMedGoogle Scholar
  280. Shang, X. M., R. C. Jackson, H. T. Nguyen &J. Y. Huang. 1989. Chromosome pairing in theTriticum monococcum complex: evidence for pairing control genes. Genome 32:216–226.Google Scholar
  281. Sherman, J. D., S. M. Stack &L. K. Anderson. 1989. Two-dimensional spreads of synaptonemal complexes from solanaceous plants. IV. Synaptic irregularities. Genome 32: 743–753.Google Scholar
  282. Singh, A. K. &K. S. Yadava. 1984. An analysis of interspecific hybrids and phylogenetic implications inCucumis. Pl. Syst. Evol. 147: 237–252.CrossRefGoogle Scholar
  283. Singh, R. J. 1993. Plant cytogenetics. CRC Press, Boca Raton, FL.Google Scholar
  284. — &T. Hymovitz. 1985a. The genomic relationships among six wild perennial species of the genusGlycine subgenusGlycine Willd. Theor. Appl. Genet. 71: 221–230.Google Scholar
  285. ——. 1985b. Diploid-like meiotic behavior in synthesized amphiploids of the genusGlycine Willd. subgenusGlycine. Canad. J. Genet. Cytol. 27: 655–660.Google Scholar
  286. —,K. P. Kollipara &T. Hymovitz. 1988. Further data on the genomic relationships among wild perennial species (2n = 40) of the genusGlycine. Genome 30: 166–167.Google Scholar
  287. Sjödin, J. 1970. Induced asynaptic mutants inVicia faba L. Hereditas 66: 215–232.Google Scholar
  288. Sober, E. 1993. Philosophy of biology. Oxford University Press, Oxford.Google Scholar
  289. Soltis, D. E. &L. H. Rieseberg. 1986. Autopolyploidy inTolmiea menziesii (Saxifragaceae): genetic insights from enzyme electrophoresis. Amer. J. Bot. 73: 310–318.CrossRefGoogle Scholar
  290. Stack, S. M. &D. Roelofs. 1996. Localized chiasmata and meiotic nodules in the tetraploid onionAllium porrum. Genome 39: 770–783.PubMedCrossRefGoogle Scholar
  291. Stanley, S. 1979. Macroevolution: pattern and process. W. H. Freeman, San Francisco.Google Scholar
  292. Stebbins, G. L. 1947. The origin of the complex ofBromus carinatus and its phytogeographic implications. Contrib. Gray Herb. 165:442–54.Google Scholar
  293. —. 1981. Chromosomes and evolution in the genusBromus (Gramineae). Bot. Jahrb. Syst. 102: 359–379.Google Scholar
  294. — &F. T. Pun. 1953. Artificial and natural hybrids in the Gramineae, tribe Hordeae. V. Diploid hybrids ofAgropyron. Amer. J. Bot. 40:444–449.CrossRefGoogle Scholar
  295. Steffensen, D. 1953. Induction of chromosome breakage at meiosis by a magnesium deficiency inTradescantia. Proc. Natl. Acad. Sci. U.S.A. 39: 613–620.PubMedCrossRefGoogle Scholar
  296. Stern, H. 1986. Meiosis: some considerations. J. Cell Sci. Suppl. 4: 29–43.PubMedGoogle Scholar
  297. Stevens, P. F. 1984. Homology and phylogeny: morphology and systematics. Syst. Bot. 9: 395–409.CrossRefGoogle Scholar
  298. Subrahmanyam, N. C. 1978. Meiosis in polyhaploidHordeum: Hemizygous ineffective control of diploid-like behaviour in a hexaploid? Chromosoma (Berlin) 66: 185–192.CrossRefGoogle Scholar
  299. Suja, J. A., C. Antonio, C. G. de la Vega &J. S. Rufas. 1994. Supernumerary chromosome segments and intrabivalent chiasma redistribution inPyrgomorpha conica (Orthoptera). Heredity 73:1–10.CrossRefGoogle Scholar
  300. Sutton, W. S. 1902. On the morphology of the chromosome group ofBrachystola magna. Biol. Bull. 4:24–39.CrossRefGoogle Scholar
  301. —. 1903. The chromosomes in heredity. Biol. Bull. 4: 231–248.CrossRefGoogle Scholar
  302. Swofford, D. L., G. J. Olsen, P. J. Waddell &D. M. Hillis. 1996. Phylogenetic inference. Pp. 407–514in D. M. Hillis et al., (eds.), Molecular systematics. Ed. 2. Sinauer Associates, Sunderland, MA.Google Scholar
  303. Sybenga, J. 1988. Mathematical models for estimating preferential pairing and recombination in triploid hybrids. Genome 30: 745–757.Google Scholar
  304. —. 1994. Preferential pairing estimates from multivalent frequencies in tetraploids. Genome 37: 1045–1055.PubMedCrossRefGoogle Scholar
  305. —. 1996. Limitations and pitfalls in the use of quantitative polyploid meiotic models for genome analysis. Pp. 81–97in P. P. Jauhar (ed.), Methods of genome analysis in plants. CRC Press, Boca Raton, FL.Google Scholar
  306. Sym, M., J. Engebrecht &G. S. Roeder. 1993.ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72:365–378.PubMedCrossRefGoogle Scholar
  307. Taylor, I. B. &G. M. Evans. 1977. The genotypic control of homoeologous chromosome association inLolium temulentum × Lolium perenne interspecific hybrids. Chromosoma 62: 57–67.CrossRefGoogle Scholar
  308. Tease, C. &G. H. Jones. 1976. Chromosome-specific control of chiasma formation inCrepis capillaris. Chromosoma 57: 33–49.CrossRefGoogle Scholar
  309. Terasawa, M., A. Shinohara, Y. Hotta, H. Ogawa &T. Ogawa. 1995. Localization of RecA-like recombination proteins on chromosomes of the lily at various meiotic stages. Genes Develop. 9: 925–934.PubMedCrossRefGoogle Scholar
  310. Thiele, K. 1993. The Holy Grail of the perfect character: the cladistic treatment of morphometric data. Cladistics 9: 275–304.CrossRefGoogle Scholar
  311. Thomas, H. M. 1995. Meiosis of triploidLolium. II. Discrepancies between the analyses of chromosome congigurations at metaphase I in inverse autoallotriploid combinations. Heredity 75:446–452.CrossRefGoogle Scholar
  312. — &R. A. Pickering. 1985. The influence of parental genotype on the chromosome behaviour ofHordeum vulgare × H. bulbosum diploid hybrids. Theor. Appl. Genet. 71: 437–442.Google Scholar
  313. Tishkoff, D. X., B. Rockmill, G. S. Roeder &R. D. Kolodner. 1995. The sep1 mutant ofSaccharomyces cerevisiae arrests in pachytene and is deficient in meiotic recombination. Genetics 139: 495–509.PubMedGoogle Scholar
  314. Togby, H. A. 1943. A cytological study ofCrepis fuliginosa, C. neglecta, and their F1 hybrid, and its bearing on the mechanism of phylogenetic reduction in chromosome number. J. Genet. 45: 67–111.Google Scholar
  315. U. N. 1935. Genome analysis inBrassica with special reference to the experimental formation ofB. napus and peculiar mode of fertilization. Japan. J. Bot. 7:389–452.Google Scholar
  316. Vardi, A. &G. A. Dover. 1972. The effects of B chromosomes on meiosic and pre-meiotic spindles and chromosome pairing inTriticum/Aegilops hybrids. Chromosoma 38: 367–385.PubMedCrossRefGoogle Scholar
  317. Vrba, E. 1980. Evolution, species, and fossils: how does life evolve? South African J. Sci. 76: 61–84.Google Scholar
  318. Waines, J. G. 1976. A model for the origin of diploidizing mechanisms in polyploid species. Amer. Naturalist 110: 415–430.CrossRefGoogle Scholar
  319. Wang, R. R.-C. 1989. An assessment of genome analysis based on chromosome pairing in hybrids of perennial Triticeae. Genome 32: 179–189.Google Scholar
  320. —. 1990. Comparative pairing in triploids and diploids of perennial Triticeae. Genome 33: 89–94.Google Scholar
  321. —. 1992. Genome relationships in the perennial Triticeae based on diploids hybrids and beyond. Hereditas 116:133–136.CrossRefGoogle Scholar
  322. —,R. von Bothmer, J. Dvorak, G. Fedak, I. Linde-Launen &M. Muramatsu. 1996. Genome symbols in the Triticeae. Pp. 29–34in R. R.-C. Wang et al., (eds.), Proceedings of the 2nd International Triticeae Symposium. Utah State University, Salt Lake City.Google Scholar
  323. Watanabe, K. 1977. The control of diploid-like meiosis in polyploid taxa ofChrysanthemum (Compositae). Japan. J. Genet. 52: 125–131.CrossRefGoogle Scholar
  324. —. 1981a. Studies on the control of diploid-like meiosis in polyploid taxa ofChrysanthemum. I. HexaploidCh. japonense Nakai. Cytologia 46: 459–498.Google Scholar
  325. —. 1981b. Studies on the control of diploid-like meiosis in polyploid taxa ofChrysanthemum. II. OctoploidCh. ornatum Hemsley. Cytologia 46: 499–513.Google Scholar
  326. Werman, S. D., M. S. Springer &R. J. Britten. 1996. Nucleic acids I: DNA-DNA hybridization. Pp. 169–203in D. M. Hillis et al. (eds.), Molecular systematics. Ed. 2. Sinauer Associates. Sunderland, MA.Google Scholar
  327. Wet, J. M. J. de &J. R. Harlan. 1972. Chromosome pairing and phylogenetic affinities. Taxon 21: 67–70.CrossRefGoogle Scholar
  328. Wettstein, D. von, S. W. Rasmussen &P. B. Holm. 1984. The synaptonemal complex in genetic segregation. Ann. Rev. Genet. 18: 331–413.CrossRefGoogle Scholar
  329. Winge, Ø. 1917. The chromosomes. Their number and general importance. Compte Rendue Trav. Labor. Carlsberg. 13: 131–206.Google Scholar
  330. —. 1925. Contributions to the knowledge of chromosome numbers in plants. Cellule 35:305–324.Google Scholar
  331. —. 1932. On the origin of constant species-hybrids. Svensk Botanisk Tidskrift 26: 107–122.Google Scholar
  332. Wood, C. E., Jr. 1955. Evidence for the hybrid origin ofDrosera anglica. Rhodora 57: 103–130.Google Scholar
  333. Wynne, J. C. &T. Halward. 1989. Cytogenetics and genetics ofArachis. Crit. Rev. Pl. Sci. 8:189–220.Google Scholar

Copyright information

© The New York Botanical Garden 1998

Authors and Affiliations

  • Ole Seberg
    • 1
  • Gitte Petersen
    • 1
  1. 1.Botanical InstituteUniversity of CopenhagenCopenhagen KDenmark

Personalised recommendations