The Botanical Review

, Volume 63, Issue 4, pp 356–394 | Cite as

Chemistry of cerambycid host plants. Part I: Survey of Leguminosae—A study in adaptive radiation

  • Barbara Meurer-Grimes
  • Gérard Tavakilian


Eighty wood samples representing 51 taxa in 33 genera of Leguminosae were collected in the Sinnamary River Basin in Northern French Guiana and evaluated for their fauna of longhorned beetles (Cerambycidae) and their phytochemical constituents. The cerambycid fauna was assessed using cut branches and trunks that were continuously observed for emerging beetles. Phytochemical patterns were determined in partially purified methanolic extracts that were obtained from wood and bark of the same branches and trunks using thin-layer chromatography (TLC) and high-pressure liquid chromatography (HPLC). It was found that small groups of taxonomically related and often phytochemically similar plant species serve as host plants for small and well-defined longicorn guilds. Members of longicorn guilds are usually not taxonomically related. Host-plant chemistry appears to play a role in resource allocation among longicorn guilds in this lowland neotropical rainforest. These findings are discussed in reference to theories on coevolution and adaptive radiation in plant-insect associations.


Host Plant Botanical Review Wood Sample Adaptive Radiation Pipecolic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Insgesamt achtzig Holzproben, die im Becken des Sinnamary im nördlichen Französisch Guiana von 51 Taxa der Leguminosen entnommen wurden und insgesamt 33 Gattungen repräsentieren, wurden in Hinblick auf ihre Langhornkäferfauna (Cerambycidae) und ihre phytochemischen Eigenschaften untersucht. Gefällte Stämme wurden über die Dauer von vier Monaten hinweg beobachtet, um die schlüpfenden Langhornkäfer zu identifizieren. Die phytochemischen Profile wurden mittels Dünnschichtchromatographie (DC) und Hochdruckflüssigkeitschromatographie (HPLC) von methanolischen Extrakten charakterisiert, die von den Holzproben der frisch gefällten Stämmen angefertigt wurden. Die Resultate dieser Untersuchung zeigen, dass kleinere Gruppen taxonomisch verwandter und oft phytochemisch ähnlicher Leguminosenarten als Wirtspflanzen für kleine, aber gut beschreibbare Langhornkäfersippen dienen. Die Arten dieser Langhornkäfersippen zeigen oft keinerlei taxonomische Verwandtschaft. Daher kann angenommen werden, dass die phytochemischen Profile der Wirtspflanzen eine wichtige Rolle in der Nutzung und Erkennung von potentiellen Wirtspflanzen in diesem tiefliegenden Neotropischen Regenwald spielen. Diese Resultate werden im Hinblick auf die Theorien der Coevolution und der adaptiven Kolonisierung von Wirtspflanzen diskutiert.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Achenbach, H., M. Stöcker, &M. A. Constenla. 1986. Chemical investigations of tropical medicinal plants, XXI [1] Long chain alkyl esters of ferulic and p-coumaric acid fromBauhinia manca. Z. Na-turforsch. C41: 164–168.Google Scholar
  2. Balandrin, M. F. &A. D. Kinghorn. 1981. Characterization of sweetinine, a constituent ofSweetia ele-gans, as theOrmosia alkaloid, (=)-6-epipodopetaline. J. Nat. Prod.44: 619–622.CrossRefGoogle Scholar
  3. Barneby, R. C. &J. W. Grimes. 1996. Silk tree, guanacaste, monkey’s earring: a generic system for the synandrous Mimosaceae of the Americas. Part I.Abarema, Albizia, and allies. Mem. New York Bot. Gard.74(1): 1–292.Google Scholar
  4. ——. 1997. Silk tree, guanacaste, monkey’s earring: a generic system for the synandrous Mimosaceae of the Americas. Part II.Pithecellobium, Cojoba, andZygia. Mem. New York Bot. Gard.74(2): 1–149.Google Scholar
  5. - & -. Submitted. Flora of the Guianas: Leguminosae. Koeltz Scientific Books, Koenigstein.Google Scholar
  6. Berenbaum, M. 1983. Coumarins and caterpillars: a case of coevolution. Evolution37: 163–179.CrossRefGoogle Scholar
  7. Bernays, E. &M. Graham. 1988. On the evolution of host specificity in phytophagous arthropods. Ecology69: 886–892.CrossRefGoogle Scholar
  8. Bisby, F. A., J. Buckingham &J. B. Harborne (eds.). 1994. Phytochemical dictionary of the Legumi-nosae, ILDIS (International Legume Database and Information Service) and CHCD (Chapman and Hall Database). Vols. 1 & 2. Chapman & Hall, London.Google Scholar
  9. Borel, C. &K. Hostettmann. 1987. Molluscicidal saponins fromSwartzia madagascariensis Desvaux. Helv. Chim. Acta70: 570–576.CrossRefGoogle Scholar
  10. Bowers, D. 1988. Chemistry and coevolution: iridoid glycosides, plants and herbivorous insects. Pp. 133–165in K. Spencer (ed.), Chemical mediation of coevolution. Academic Press, San Diego.Google Scholar
  11. Brown, K. S. 1987. Chemistry at the Solanaceae/Ithomiinae interface. Ann. Missouri Bot. Gard.74: 359–397.CrossRefGoogle Scholar
  12. —,J. R. Rigo, R. B. Francini, A. B. Barros de Morais &P. C. Motta. 1991. Aposematic insects on toxic host plants: coevolution, colonization, and chemical emancipation. Pp. 375–402in P. W. Price, T. M. Lewinsohn, G. W. Fernandes & W. W. Benson (eds.), Plant-animal interactions: evolu-tionary ecology in tropical and temperate regions. John Wiley, New York.Google Scholar
  13. Cochran, D. G. 1995. Insect resistance to pyrethrins and pyrethroids. Pp. 234–248in J. E. Casida & G. B. Quistad (eds.), Pyrethrum flowers. Production, chemistry, toxicology, and uses. Oxford Univer-sity Press, New York.Google Scholar
  14. Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia University Press, New York.Google Scholar
  15. Drummond, B. A. &K. S. Brown. 1987. Ithomiinae (Lepidoptera: Nymphalidae): summary of known larval food plants. Ann. Missouri Bot. Gard.74: 341–358.CrossRefGoogle Scholar
  16. DuBois, J. L. &A. T. Sneden. 1992. Dihydrolicoisoflavone, a new isoflavanone fromSwartzia poly-phylla. J. Nat. Prod.58: 629–632.CrossRefGoogle Scholar
  17. Ehrlich, P. R. &P. H. Raven. 1964. Butterflies and plants: a study in coevolution. Evolution18: 586–608.CrossRefGoogle Scholar
  18. Farrell, B. &C. Mitter. 1990. Phylogenesis of insect/plant interactions: havePhyllobrotica leaf beetles (Chrysomelidae) and the Lamiales diversified in parallel? Evolution44: 1389–1403.CrossRefGoogle Scholar
  19. Fox, L. R. 1988. Diffuse coevolution with complex communities. Ecology69: 906–907.CrossRefGoogle Scholar
  20. Harborne, J. B. 1993. Introduction to ecological biochemistry. Ed. 4. Academic Press, London.Google Scholar
  21. Hegnauer, R. 1994. Chemotaxonomie der Pflanzen. Band 11a. Leguminosae. Birkhäuser Verlag, Basel.Google Scholar
  22. Hequet, V. &G. Tavakilian. 1996. Longicorns de Guyane. Silvolab, ORSTOM, Cayenne, France.Google Scholar
  23. Kinghorn, A. D. &S. J. Smolenski. 1981. Alkaloids in the Papilionoideae. Pp. 585–598in R. M. Polhill & P. H. Raven (eds.), Advances in legume systematics. Parts 1 & 2. Royal Botanic Gardens, Kew.Google Scholar
  24. Mendelsohn, R. &Balick, M. 1995. The value of undiscovered Pharmaceuticals in tropical forests. Econ. Bot.49: 223–228.Google Scholar
  25. NAPRALERT. 1997. Natural PRoducts ALERT Database, Board of Trustees of the University of Illi-nois. Program for Collaborative Research in the Pharmaceutical Sciences, College of Pharmacy of the University of Illinois at Chicago.Google Scholar
  26. Nigg, H. N. &R. C. Beier. 1995. Evaluation of food for potential toxicants. Pp. 192–201in D. L. Gustine & H. E. Flores (eds.), Phytochemicals and health. American Society of Plant Physiologists, Rockville, MD.Google Scholar
  27. Polhill, R. M. &P. H. Raven (eds.). 1981. Advances in legume systematics. Parts 1 and 2. Royal Bo-tanic Gardens, Kew.Google Scholar
  28. Renwick, J. A. A. 1988. Comparative mechanisms of host selection by insects attacking pine trees and crucifers. Pp. 303–316in K. Spencer (ed.), Chemical mediation of coevolution. Academic Press, San Diego.Google Scholar
  29. Ricker, M., G. Veen, D. C. Daly, L. Witte, L. Sinta V., I. J. Chota &F. C. Czygan. 1994. Alkaloid di-versity in eleven species ofOrmosia and inClathrotropis macrocarpa (Leguminosae-Papilionoi-deae). Brittonia46: 355–371.CrossRefGoogle Scholar
  30. Schuler, M. A. 1996. The role of cytochrome P450 monooxygenases in plant-insect interactions. Pl. Physiol. 112: 1411–1419.CrossRefGoogle Scholar
  31. Tavakilian, G., A. Berkov, B. Meurer-Grimes &S. Mori. 1997. Neotropical tree species and their fau-nas of xylophagous longicorns (Coleoptera: Cerambycidae) in French Guiana. Bot. Rev. (Lancas-ter)63: 303–355.CrossRefGoogle Scholar
  32. Taylor, R. S. L., J. B. Hudson &G. H. N. Towers. 1995. Photo-mediated activities of antibacterial and antiviral compounds from plants. Pp. 48–58in D. L. Gustine & H. E. Flores (eds.), Phytochemicals and health. American Society of Plant Physiologists, Rockville, MD.Google Scholar
  33. Thompson, J. 1988. Coevolution and alternative hypotheses on insect/plant interactions. Ecology 69: 893–895.CrossRefGoogle Scholar

Copyright information

© The New York Botanical Garden 1997

Authors and Affiliations

  • Barbara Meurer-Grimes
    • 1
  • Gérard Tavakilian
    • 2
  1. 1.Department of Biological Sciences, Lehman CollegeThe City University of New YorkWest BronxUSA
  2. 2.Laboratoire d’Entomologie forestiére Centre de CayenneOrstomCayenne CédexFrance

Personalised recommendations