The AAPS Journal

, Volume 8, Issue 2, pp E409–E412 | Cite as

2-Arachidonoylglycerol (2-AG) membrane transport: History and outlook



Only a few studies have addressed the transport of 2-arachidonoylglycerol (2-AG), a naturally occurring agonist for cannabinoid receptors. Based upon saturation kinetics, these early reports have proposed that 2-AG enters the cell by a specific 2-AG transporter, via the putative anandamide transporter, or by simple diffusion. In this review, the uptake of 2-AG is discussed in light of the recent advances that have been made for anandamide transport, where the mechanism appears to be rate-limited diffusion through the membrane. Endocannabinoids may be a distinct class of agonists since they are hydrophobic and neutral, exhibiting similar biophysical properties to some anesthetics that freely diffuse through the membrane.


anandamide 2-AG 2-arachidonoylglycerol cannabinoids endocannabinoid transport 


  1. 1.
    Sugiura T, Kondo S, Sukagawa A, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain.Biochem Biophys Res Commun. 1995;215:89–97.CrossRefPubMedGoogle Scholar
  2. 2.
    Mechoulam R, Ben-Shabat S, Hanus L, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors.Biochem Pharmacol. 1995;50:83–90.CrossRefPubMedGoogle Scholar
  3. 3.
    Piomelli D. The challenge of brain lipidomics.Prostaglandins Other Lipid Mediat. 2005;77:23–34.CrossRefPubMedGoogle Scholar
  4. 4.
    Jonsson KO, Holt S, Fowler CJ. The endocannabinoid system: current pharmacological research and therapeutic possibilities.Basic Clin Pharmacol Toxicol. 2006;98:124–134.CrossRefPubMedGoogle Scholar
  5. 5.
    Di Marzo V. A brief history of cannabinoid and endocannabinoid pharmacology as inspired by the work of British scientists.Trends Pharmacol Sci. 2006;27:134–140.CrossRefPubMedGoogle Scholar
  6. 6.
    Di Marzo V, Bisogno T, Sugiura T, Melck D, De Petrocellis L. The novel endogenous cannabinoid 2-arachidonoylglycerol is inactivated by neuronal- and basophil-like cells: connections with anandamide.Biochem J. 1998;331:15–19.PubMedGoogle Scholar
  7. 7.
    Ben-Shabat S, Fride E, Sheskin T, et al. An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity.Eur J Pharmacol. 1998;353:23–31.CrossRefPubMedGoogle Scholar
  8. 8.
    Piomelli D, Beltramo M, Glasnapp S, et al. Structural determinants for recognition and translocation by the anandamide transporter.Proc Natl Acad Sci USA. 1999;96:5802–5807.CrossRefPubMedGoogle Scholar
  9. 9.
    Beltramo M, Piomelli D. Carrier-mediated transport and enzymatic hydrolysis of the endogenous cannabinoid 2-arachidonylglycerol.Neuroreport. 2000;11:1231–1235.CrossRefPubMedGoogle Scholar
  10. 10.
    Bisogno T, Maccarrone M, De Petrocellis L, et al. The uptake by cells of 2-arachidonoylglycerol, an endogenous agonist of cannabinoid receptors.Eur J Biochem. 2001;268:1982–1989.CrossRefPubMedGoogle Scholar
  11. 11.
    De Petrocellis L, Bisigno T, Davis JB, Pertwee RG, Di Marzo V. Overlap between the ligand recognition properties of the anandamide transporter and the VR1 vanilloid receptor: inhibitors of anandamide uptake with negligible capsaicin-like activity.FEBS Lett. 2000;483:52–56.CrossRefPubMedGoogle Scholar
  12. 12.
    Hajos N, Kathuria S, Dinh T, Piomelli D, Freund TF. Endocannabinoid transport tightly controls 2-arachidonoyl glycerol actions in the hippocampus: effects of low temperature and the transport inhibitor AM404.Eur J Neurosci. 2004;19:2991–2996.CrossRefPubMedGoogle Scholar
  13. 13.
    Bisogno T, Howell F, Williams G, et al. Cloning of the first snl-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain.J Cell Biol. 2003;163:463–468.CrossRefPubMedGoogle Scholar
  14. 14.
    Dinh TP, Kathuria S, Piomelli D. RNA interference suggests a primary role for monoacylglycerol lipase in the degradation of the endocannabinoid 2-arachidonoylglycerol.Mol Pharmacol. 2004;66:1260–1264.CrossRefPubMedGoogle Scholar
  15. 15.
    Dinh TP, Carpenter D, Leslie FM, et al. Brain monoglyceride lipase participating in endocannabinoid inactivation.Proc Natl Acad Sci USA. 2002;99:10819–10824.CrossRefPubMedGoogle Scholar
  16. 16.
    Fowler CJ, Tiger G, Ligresti A, Lopez-Rodriguez ML, Di Marzo V. Selective inhibition of anandamide cellular uptake versus enzymatic hydrolysis: a difficult issue to handle.Eur J Pharmacol. 2004;492:1–11.CrossRefPubMedGoogle Scholar
  17. 17.
    Karlsson M, Pahlsson C, Fowler CJ. Reversible, temperature-dependent, and AM404-inhibitable adsorption of anandamide to cell culture wells as a confounding factor in release experiments.Eur J Pharm Sci. 2004;22:181–189.CrossRefPubMedGoogle Scholar
  18. 18.
    Bojesen IN, Hansen HS. Binding of anandamide to bovine serum albumin.J Lipid Res. 2003;44:1790–1794.CrossRefPubMedGoogle Scholar
  19. 19.
    Bojesen IN, Hansen HS. Membrane transport of anandamide through resealed human red blood cell membranes.J Lipid Res. 2005;46:1652–1659.CrossRefPubMedGoogle Scholar
  20. 20.
    Kaczocha M, Hermann A, Glaser ST, Bojesen IN, Deutsch DG. Anandamide uptake is consistent with rate-limited diffusion and is regulated by the degree of its hydrolysis by FAAH.J Biol Chem. 2006;281:9066–9075.CrossRefPubMedGoogle Scholar
  21. 21.
    Bojesen IN, Hansen HS. Effect of an unstirred layer on the membrane permeability of anandamide.J Lipid Res. 2006;47:561–570.CrossRefPubMedGoogle Scholar
  22. 22.
    Glaser ST, Kaczocha M, Deutsch DG. Anandamide transport: a critical review.Life Sci. 2005;77:1584–1604.CrossRefPubMedGoogle Scholar
  23. 23.
    Glaser ST, Abumrad NA, Fatade F, Kaczocha M, Studholme KM, Deutsch DG. Evidence against the presence of an anandamide transporter.Proc Natl Acad Sci USA. 2003;100:4269–4274.CrossRefPubMedGoogle Scholar
  24. 24.
    Hillard CJ, Jarrahian A. Cellular accumulation of anandamide: consensus and controversy.Br J Pharmacol. 2003;140:802–808.CrossRefPubMedGoogle Scholar
  25. 25.
    Deutsch DG, Glaser ST, Howell JM, et al. The cellular uptake of anandamide is coupled to its breakdown by fatty-acid amide hydrolase.J Biol Chem. 2001;276:6967–6973.CrossRefPubMedGoogle Scholar
  26. 26.
    Day TA, Rakhshan F, Deutsch DG, Barker EL. Role of fatty acid amide hydrolase in the transport of the endogenous cannabinoid anandamide.Mol Pharmacol. 2001;59:1369–1375.PubMedGoogle Scholar
  27. 27.
    Hohmann AG, Suplita RL, Bolton NM, et al. An endocannabinoid mechanism for stress-induced analgesia.Nature. 2005;435:1108–1112.CrossRefPubMedGoogle Scholar
  28. 28.
    Makara JK, Mor M, Fegley D, et al. Selective inhibition of 2-AG hydrolysis enhances endocannabinoid signaling in hippocampus.Nat Neurosci. 2005;8:1139–1141.CrossRefPubMedGoogle Scholar
  29. 29.
    Quistad GB, Klintenberg R, Caboni P, Liang SN, Casida JE. Monoacylglycerol lipase inhibition by organophosphorus compounds leads to elevation of brain 2-arachidonoylglycerol and the associated hypomotility in mice.Toxicol Appl Pharmacol. 2006;211:78–83.CrossRefPubMedGoogle Scholar
  30. 30.
    Chi Y, Khersonsky SM, Chang YT, Schuster VL. Identification of a new class of prostaglandin transporter inhibitors and characterization of their biological effects on prostaglandin e2 transport.J Pharmacol Exp Ther. 2006;316:1346–1350.CrossRefPubMedGoogle Scholar
  31. 31.
    McFarland MJ, Porter AC, Rakhshan FR, Rawat DS, Gibbs RA, Barker EL. A role for caveolae/lipid rafts in the uptake and recycling of the endogenous cannabinoid anandamide.J Biol Chem. 2004;279:41991–41997.CrossRefPubMedGoogle Scholar
  32. 32.
    Bari M, Battista N, Fezza F, Finazzi-Agro A, Maccarrone M. Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells: implications for anandamide-induced apoptosis.J Biol Chem. 2005;280:12212–12220.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2006

Authors and Affiliations

  • Anita Hermann
    • 1
  • Martin Kaczocha
    • 1
  • Dale G. Deutsch
    • 1
  1. 1.Department of Biochemistry and Cell BiologyState University of New York at Stony BrookStony Brook

Personalised recommendations