Advertisement

Summation of fields of numbers in boolean tribes I. Auxiliary notions and theorems

  • Otton Martin Nikodým
Article
  • 13 Downloads

Keywords

Scalar Field Infinite Sequence Measurable Subset Partial Complex Finite Union 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Otton M. Nikodým.Summation of quasi-vectors on Boolean tribes and its application to Quantum Theories I.Mathematically precise theory of P. A. M. Dirac's Delta Function. Rendiconti del Seminario Matematico della Università di Padova, (1959), Vol. 29, p. 1–214.Google Scholar
  2. (2).
    Otton M. Nikodým.Contribution à la théorie des opérateurs normaux, maximaux dans l'espace de Hilbert-Hermite séparable et complet. Journ. d. Math. Pures et Appliquées, tome 36, p. 129–146, (1957).MATHGoogle Scholar
  3. (3).
    Otton M. Nikodým. C. R. Acad. Sc. t. 238, (1954), p. 1373–1375, p. 1467–1469.Google Scholar
  4. (4).
    Otton M. Nikodým.Un nouvel appareil mathématique pour la théorie de Quanta. Ann. Inst. H. Poincaré. t. II, (1949), p. 49–122.Google Scholar
  5. (5).
    Otton M. Nikodým. C. R. Acad. Sc. t. 224, (1947), p. 522–524, p. 628–630, p. 778–780.MATHGoogle Scholar
  6. (6).
    Otton M. Nikodým.Contribution to the theory of maximal, normal operators II.An item of operational calculus and its application to resolvent and spectrum. Journ. f. die reine u. angew. Mathematik. (1960), Bd. 203, p. 90–100.MATHGoogle Scholar
  7. (7).
    G. Birkhoff.Lattice Theory. (1948), New York.Google Scholar
  8. (8).
    Otton M. Nikodým.Critical remarks on some basic notions in Boolean lattices. Anais de Academia Brasileira de Sciencias, Vol. 24, (1952), p. 113–136.Google Scholar
  9. (9).
    Otton M. Nikodým.Critical remarks on some basic notions in Boolean lattices II. Rendiconti del Seminario Matematico della Università di Padova, Vol. 27, (1957), p. 193–217.Google Scholar
  10. (10).
    M. H. Stone.The theory of representation for Boolean algebras. Trans. Amer. Math. Soc. 40, (1936), p. 37–111.MATHCrossRefMathSciNetGoogle Scholar
  11. (11).
    F. Wecken.Abstracte Integrale und fastperiodische Functionen. Mathem. Zeitschrift, (1959), Vol. 45, p. 377–404.CrossRefMathSciNetGoogle Scholar
  12. (12).
    Otton M. Nikodým.Sur une généralisation des intégrales de M. J. Radon. Fund. Math. 14, (1929), p. 131–179.Google Scholar
  13. (13).
    S. Saks.Theory of the integral. New York, (1937).Google Scholar
  14. (14).
    M. Fréchet.Sur l'intégrale d'une fonctionnelle étendue a un ensemble abstrait. Bull. de la Soc. Math. de France, t. 43, (1915).Google Scholar
  15. (15).
    Otton M. Nikodým.Sur l'existence d'une mesure parfaitement (d'énumerablement) additive et non séparable. Mém. de l'Acad. Roy. de Belgique (Classe des Sc.), t. 17, (1938).Google Scholar
  16. (16).
    Otton M. Nikodým.Sur une propriété de la mesure généralisée des ensembles. Prace Matematyczno-Fizyczne. Warsow. Vol. 36, (1928–29), p. 65–71.Google Scholar
  17. (17).
    G. Ludwig.Die Grundlagen der Quantenmechanik. Springer-Verlag, Berlin-Göttingen-Heidelberg, [Die Grundlehren der Mathematischen Wissenschaften. Bd. 52], pp. XII+460.Google Scholar

Copyright information

© Springer 1960

Authors and Affiliations

  • Otton Martin Nikodým
    • 1
  1. 1.GambierU. S. A.

Personalised recommendations