American Potato Journal

, Volume 64, Issue 9, pp 483–491 | Cite as

Effect of supplemental nitrogen on true potato seed weight

  • N. Pallais
  • S. Villagarcia
  • N. Fong
  • J. Tapia
  • R. Garcia


The effect on true potato seed (TPS) weight of supplemental nitrogen (N) applied during seed development was investigated using crosses DTO-33 × R128.6 (“A” produced in the field) and Atzimba × R128.6 (“B” produced in the field and in a screenhouse). Dry weights of tops and tubers of the mother plants were also measured in the screenhouse.

The response to supplemental N (0-240 kg/ha) in 100-TPS weight of cross A and B from the field was positive and linear. In the screenhouse, where higher total N (0-1200 kg/ha) was applied, the responses in 100-TPS weight and dry weight of tops and tubers were curvilinear, with maximum levels at 800, 1000 and 400 kg/ha, respectively. The 100-TPS weight of cross B was 40% higher in the field than in the screenhouse. In the field, increased frequency of supplemental N applications increased 100-TPS weight of large and medium berries of cross B, but had no effect on seed from small berries nor on seed from any berries of cross A. In the screenhouse, increased application frequency decreased tuber dry weight and increased dry weight of tops, but had no effect on 100-TPS weight. It was concluded that supplemental N must be applied during seed development and at higher total levels than those required for optimum tuber yields in order to maximize 100-TPS weight. The lower seed weight from the screenhouse suggests that other environmental factors (e.g., temperature) present during growth of the mother plant can affect the weight of the resultant TPS.

Key Words

True potato seed TPS seed quality seed production nitrogen 


Se estudió el efecto en el peso de la semilla sexual de papa (semilla) de aplicaciones de nitrógeno (N) adicional (0 a 240 kg/ha) durante el desarrollo de la semilla. Se usaron los cruzamientos DTO-33 × R128.6 (“A” producido en el campo) y Atzimba × R128.6 (“B” producido en el campo y en macetas). Los pesos secos tanto del follaje como de los tubérculos de las plantas madres en las macetas también fueron evaluados.

Se encontró una respuesta linear positiva al N adicional en el peso de la semilla en el campo. En las macetas con mayores niveles de N, las respuestas en el peso de la semilla y en el peso seco del follaje y los tubérculos fueron curvilineares con niveles óptimos de aproximadamente 800, 1000 y 400 kg/ha, respectivamente. Una mayor frecuencia de aplicación de N fue generalmente más efectiva para aumentar el peso de la semilla del cruzamiento B en el campo; no hubo efecto de la frecuencia de aplicación en las macetas ni en la semilla del cruzamiento A. El peso de la semilla del cruzamiento B fue aproximadamente 40% menor en las macetas que en el campo. Se concluyó que para maximizar el peso de la semilla es necesario aplicar N adicional durante el desarrollo de la semilla a niveles totales más altos que los exigidos para óptima producción de tubérculos. El peso menor de la semilla de plantas que estaban en macetas sugiere que factores ambientales, como la temperatura, afectan el peso de la semilla.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Accatino, P. and P. Malagamba. 1983. Growing potatoes from TPS. Current agronomic knowledge and future prospects. Page 61.In: W.J. Hooker (ed.). Research for the Potato in the Year 2000. Proc Int Cong International Potato Center, Lima, Peru. 193 pp.Google Scholar
  2. 2.
    Acuna, J.L. 1985. Efecto del tamaño de la semilla botánica y del tipo de sustrato sobre el crecimiento y desarrollo inicial de las plantas de papa. B.S. Thesis, Universidad Austral de Chile, Valdivia, Chile. 55 pp.Google Scholar
  3. 3.
    Augustin, J., R.E. McDole and G.C. Painter. 1977. Influence of fertilizer, irrigation, and storage treatments on nitrate-N content of potato tubers. Am Potato J 54:125–136.CrossRefGoogle Scholar
  4. 4.
    Dayal, T.R., M.D. Upadhya and S.N. Chaturvedi. 1984. Correlation studies on 100-trueseed weight, tuber yield and other morphological traits in potato (Solanum tuberosum L.). Potato Res 27:185–188.CrossRefGoogle Scholar
  5. 5.
    Dubetz, S. and J.B. Bole. 1975. Effect of nitrogen, phosphorus, and potassium fertilizers on yield components and specific gravity of potatoes. Am Potato J 52:399–405.CrossRefGoogle Scholar
  6. 6.
    Dyson, P. 1965. Some effects of inorganic nutrients on the growth and development of the potato plant. Eur Potato J 8:249.Google Scholar
  7. 7.
    International Potato Center. 1977. Annual Report, Lima, Peru.Google Scholar
  8. 8.
    International Potato Center. 1985. Annual Report, Lima, Peru.Google Scholar
  9. 9.
    Kinet, J., R.M. Sachs and G. Bernier. 1985. Control by nutrition. Pages 53–61.In: The Physiology of Flowering. Vol. III. CRC Press, Inc. Florida. 274 pp.Google Scholar
  10. 10.
    Kleinkopf, G.E., D.T. Westerman and R.B. Dwelle. 1981. Dry matter production and nitrogen utilization by six potato cultivars. Agron J 73:799–802.CrossRefGoogle Scholar
  11. 11.
    Krauss, A. 1978. Tuberization and abscisic acid content inSolanum tuberosum as affected by nitrogen nutrition. Potato Res 21:183–193.CrossRefGoogle Scholar
  12. 12.
    Maas, E.F. 1968. Nitrogen deficiency of potatoes in organic soil. Am Potato J 45:378–382.Google Scholar
  13. 13.
    Malagamba, X. 1984. Agronomic management for transplanting TPS seedlings. Pages 63–93.In: Innovative Methods for Propagating Potatoes. Report XXVIII Plan Conf, International Potato Center, Lima, Peru. 342 pp.Google Scholar
  14. 14.
    Malagamba, P. 1987. Potato production from true seed. Proc Symp 22nd Int Cong Am Soc Hortic Sci (in press).Google Scholar
  15. 15.
    Moorby, J. 1978. The physiology of growth and tuber yield. Pages 153–194.In: Harris, P.M. (ed.). The Potato Crop: The Scientific Basis for Improvement. Chapman and Hall Ltd. London. 730 pp.Google Scholar
  16. 16.
    Pallais, N., N. Fong and D. Berrios. 1984. Research on the physiology of potato sexual seed production. Pages 149–168.In: Innovative Methods for Propagating Potatoes. Report XXVIII Plan Conf, International Potato Center, Lima, Peru. 342 pp.Google Scholar
  17. 17.
    Pallais, N., J. Kalazich and J. Santos-Rojas. 1986. The physical relationship between potato berry and its seed. HortScience 21:1359–1360.Google Scholar
  18. 18.
    Proudfoot, K.G. 1965. The effects of flowering and berry formation on tuber yield inSolanum demissum Lindl. Eur Potato J 8:118–119.CrossRefGoogle Scholar
  19. 19.
    Sommerfeldt, T.G. and K.W. Knutson. 1968. Greenhouse study of early potato growth response to soil temperature, bulk density and nitrogen fertilizer. Am Potato J 45:231–237.CrossRefGoogle Scholar
  20. 20.
    Song, B.F. 1984. Use of true potato seed in China. International Potato Center. CIP Circular 12:64–65.Google Scholar
  21. 21.
    Wilcox, G.E. and J. Hoff. 1970. Nitrogen fertilization of potatoes for early summer harvest. Am Potato J 47:99–102.Google Scholar

Copyright information

© Springer 1987

Authors and Affiliations

  • N. Pallais
    • 1
  • S. Villagarcia
    • 2
  • N. Fong
    • 3
  • J. Tapia
    • 4
  • R. Garcia
    • 4
  1. 1.International Potato Center (CIP)LimaPeru
  2. 2.Universidad Nacional AgrariaLimaPeru
  3. 3.Physiology DepartmentCIPLimaPeru
  4. 4.Universidad Nacional AgrariaLimaPeru

Personalised recommendations