American Potato Journal

, Volume 56, Issue 4, pp 225–235 | Cite as

Starch-sugar interconversion inSolanum tuberosum L. II. Influence of membrane permeability and fluidity

  • V. C. Shekhar
  • W. M. Iritani
  • J. Magnuson


A strong relationship was found between membrane permeability and starch to sugar conversion in stored potatoes. Tissue from tubers stored at low temperature had higher sugar content and more permeable membranes than from that of tubers stored at high temperature. Tubers, moisture stressed during growth and stored at 5.5 C, accumulated more reducing sugars and had more permeable membranes than tubers from normally irrigated plants when stored at the same temperature. The basal portion of Russet Burbank tubers accumulated more sugars and was also found to have significantly more permeable membranes than the apical portion. Examination of membrane order with spin-labeled lipid probes showed that the order parameter of amyloplast membranes was less at low temperatures than when measured at higher temperatures. Membranes examined with spin-labeled lipid probes from tubers stored at 5.5 C and 15.5 C showed similar order parameters at all temperatures measured between 0 and 25 C with a linear decrease in S values at higher temperatures. These results strongly indicate a physical change of membranes with changing temperature, thus influencing sugar accumulation, which is also reversible, as indicated by loss of sugars during the reconditioning process.

Key words

Starch sugar interconversion potatoes membrane permeability 


Una fuerte relación fue encontrada entre la permeabilidad de la membrana y la conversión de almidón a azúcares en papas almacenadas. Tejidos de tubérculos almacenados a bajas temperaturas, tuvieron mayor contenido de azúcares y más membranas perm≸bles que aquellos tubérculos almacenados a altas temperaturas. Tubérculos sometidos a stress de humedad durante el crecimiento y almacenados a 5.5°C acumularon más azúcares reductores y tuvieron más membranas permeables que los tubérculos regados normalmente y almacenados a la misma temperature.

La porción basal de tubérculos Russet Burbank, acumuló más azúcares y se le encontró también poseer significativamente más membranas permeables que en la porción apical. Un exámen del orden de la membranas, con ensayos de lipidos spin-labeled mostró que el parámetro de orden de membranas de amiloplastos fue menor a bajas temperaturas que cuando era medido a altas temperaturas. Las membranas examinadas de tubérculos almacenados a 5.5°C y 15.5°C bajo pruebas de lípidos spin-labeled mostraron parámetros de orden similares a todas las temperaturas medidas entre 0 y 25°C con un descenso linear de valores S a altas temperaturas. Estos resultados indican fuertemente un cambio físico de las membranas con la temperatura, influenciando así la acumulación de azucares que es también reversible, tal como indica la pérdida de azúcares durante el proceso de recondicionamiento.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Arreguin-Lozano, B. and J. Bonner. 1949. Experiments on sucrose formation by potato tubers as influenced by temperature. Plant Physiol 24:720–738.PubMedGoogle Scholar
  2. 2.
    Crafts, C.C. 1967. Respiration of potato tissue as influenced by previous storage temperatures of the tubers. Am Potato J 44:174–181.Google Scholar
  3. 3.
    Glinka, G. and L. Reinhold. 1971. Abscisic acid raises the permeability of plant cells to water. Plant Physiol 48:103–105.PubMedGoogle Scholar
  4. 4.
    Griffith, O.H. and P.C. Jost. 1976. Lipid spin labels in biological membranes.In: L.J. Berlinger, ed., Spin Labeling Theory and Application. Academic Press, New York, pp. 453–523.Google Scholar
  5. 5.
    Iritani, W.M. and L. Weller. 1971. The development of translucent end tubers. Am Potato J 50:223–233.CrossRefGoogle Scholar
  6. 6.
    Iritani, W.M., L. Weller and P.S. Russell. 1973. Relative differences in sugar content of basal and apical portions of Russet Burbank potatoes. Am Potato J 50:24–31.Google Scholar
  7. 7.
    Iritani, W.M. and L. Weller. The influence of low fertility and vine killing on sugar development in apical and basal portions of Russet Burbank potatoes. Am Potato J (in press).Google Scholar
  8. 8.
    Isherwood, F.A. 1973. Starch-sugar interconversion inSolanum tuberosum. Phytochemistry 12:2579–2591.CrossRefGoogle Scholar
  9. 9.
    Isherwood, F.A. and M.G.H. Kennedy. 1975. The composition of the expressed sap from cold stored potatoes. Phytochemistry 14:83–84.CrossRefGoogle Scholar
  10. 10.
    Isherwood, F.A. 1976. Mechanism of starch-sugar interconversion inSolanum tuberosum. Phytochemistry 15:33–41.CrossRefGoogle Scholar
  11. 11.
    Jones, P.C.T. 1970. The effect of light, temperature and anaesthetics on ATP levels in the leaves ofChemopodium rubrum andPhaseolus vulgaris. J Exp Bot 21:58–63.CrossRefGoogle Scholar
  12. 12.
    Kennedy, M.G.H. and F.A. Isherwood. 1975. Activity of phosphorylase inSolanum tuberosum during low temperature storage. Phytochemistry 14:667–670.CrossRefGoogle Scholar
  13. 13.
    Lyons, J.M. 1973. Chilling injury in plants. Annu Rev Plant Physiol 24:445–466.CrossRefGoogle Scholar
  14. 14.
    McKersie, B.D. and J.E. Thompson. 1977. Lipid crystallization in senescent membranes from cotyledons. Plant Physiol 59:803–807.PubMedGoogle Scholar
  15. 15.
    Ohad, I., I. Friedberg, A. Ne’eman and M. Schramm. 1971. Biogenesis during maturation and storage of potato tubers. Plant Physiol 47:465–477.PubMedCrossRefGoogle Scholar
  16. 16.
    Pollock, C. and T. Ap Rees. 1975. Activities of enzymes of sugar metabolism in cold stored tubers ofSolanum tuberosum. Phytochemistry 14:613–617.CrossRefGoogle Scholar
  17. 17.
    Poovaiah, B.W., Y. Mizrahi, H.C. Dostal, J.H. Cherry and A.C. Leopold. 1975. Water permeability during tomato fruit development in normal and in non-ripening mutant. Plant Physiol 56:813–815.PubMedGoogle Scholar
  18. 18.
    Pressey, R. 1970. Changes in sucrose synthetase and sucrose phosphate synthetase activities during storage of potatoes. Am Potato J 47:245–251.Google Scholar
  19. 19.
    Raison, J.R., J.M. Lyons, R.J. Mehlhorn and A.D. Keith. 1971. Temperature-induced phase changes in mitochondria membranes detected by spin labeling. J Biol Chem 246:4036–4040.PubMedGoogle Scholar
  20. 20.
    Raison, J.R., J.M. Lyons and W.W. Thomson. 1971. The influence of membranes on the temperature-induced changes in the kinetics of some respiratory enzymes of mitochondria. Arch Biochem Biophys 142:83–90.PubMedCrossRefGoogle Scholar
  21. 21.
    Razin, S., A. Ne’eman and I. Ohad. 1969. Selective reaggregation of solubilized mycoplasma-membrane proteins and the kinetics of membrane reformation. Biochem Biophys Acta 193:277–293.PubMedCrossRefGoogle Scholar
  22. 22.
    Shekhar, V.C. and W.M. Iritani. Starch-sugar interconversion inSolanum tuberosum. I. Influence of inorganic ions. Am Potato J (in press).Google Scholar
  23. 23.
    Sowokinos, J.R. 1971. Relationship of sucrose synthetase cleavage activity to the chemical and physical maturity of Norchip and Kennebec potatoes. Am Potato J 48:37–46.Google Scholar
  24. 24.
    Thimann, K.V. and E.W. Samuel. 1955. The permeability of potato tissue to water. Proc Nat Acad Sci USA 41:1029–1033.PubMedCrossRefGoogle Scholar
  25. 25.
    Weist, S.C. and P.L. Steponkus. 1977. Accumulation of sugars and plasmalemma alterations. Factors related to the lack of cold acclimation in young roots. J Am Soc Hortic Sci 102:119–123.Google Scholar

Copyright information

© Springer 1979

Authors and Affiliations

  • V. C. Shekhar
    • 1
  • W. M. Iritani
    • 2
  • J. Magnuson
    • 3
  1. 1.Quality ControlMid America Potato CompanyGrand Rapids
  2. 2.Department of HorticultureWashington State UniversityPullman
  3. 3.Department of BiochemistryWashington State UniversityPullman

Personalised recommendations