Annali dell’Università di Ferrara

, Volume 30, Issue 1, pp 163–183 | Cite as

Almost topological spaces

  • Josef Eschgfäller


Convergence spaces are studied from a geometrical point of view. In many cases we may construct a topological space VirtX, which can be considered as the resolution of the topological singularities ofX.


Topological Space Surjective Mapping Affine Space Differentiable Manifold Virtual Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Spazi di convergenza vengono studiati da un punto di vista geometrico. In molti casi possiamo costruire uno spazio topologico VirtX che può essere considerato come la risoluzione delle singolarità diX.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. D. Aleksandrov,Die innere Geometrie der konvexen Flaechen, Akademie-Verlag 1955.Google Scholar
  2. [2]
    N. Bourbaki Topologie générale.Google Scholar
  3. [3]
    H. Busemann,The geometry of geodesics, Academic Press, 1955.Google Scholar
  4. [4]
    R. Domiaty,A survey on locally metrizable spaces, Atti del Convegno di Topologia Generale; Trieste 1978 (1981), pp. 77–113.Google Scholar
  5. [5]
    H. R. Fischer,Limesräume. Math. Annalen,137 (1959), pp. 269–303.zbMATHCrossRefGoogle Scholar
  6. [6]
    R. Jamison,A general theory of convexity, Diss. Univ. Washington, Seattle, 1974.Google Scholar
  7. [7]
    R. Jamison,Review of the book by Prenowitz/Jantosciak, Am. Math. Monthly, 91 (1984).Google Scholar
  8. [8]
    D. RayE. Womble,Axiomatic convexity theory and relationships between the Carathéodory, Helly and Radon numbers, Pacific J. Math.,38 (1971), pp. 471–485.MathSciNetGoogle Scholar
  9. [9]
    D. C. KentG. D. Richardson,Locally compact convergence spaces, Michigan Math. J.,22 (1976), pp. 353–360.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    A. Kock,Synthetic differential geometry, CUP 1981.Google Scholar
  11. [11]
    H. J. Kowalsky:Limesräume und Komplettierung, Math. Nachr.,12 (1954), pp. 301–340.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    F. Lawvere,Categorical dynamics, Aarhus Var. Publ.,30 (1979), pp. 1–28.zbMATHMathSciNetGoogle Scholar
  13. [13]
    W. Neumann,On the quasivariety of convex subsets of affine spaces, Arch. Math.,21 (1970), pp. 11–16.zbMATHCrossRefGoogle Scholar
  14. [14]
    G. Nöbeling,Grundlagen der analytischen Topologie, 1954.Google Scholar
  15. [15]
    F. OstermannJ. Schmidt,Der baryzentrische Kalkül als axiomatische Grundlage der affinen Geometrie, J. reine u. angew. Math.,224 (1966), pp. 44–57.zbMATHMathSciNetGoogle Scholar
  16. [16]
    W. Prenowitz—J. Jantosciak,Join geometries, Springer, 1979.Google Scholar
  17. [17]
    W. Rinow,Die innere Geometrie der metrischen Räume.Google Scholar
  18. [18]
    G. Sierksma,Axiomatic convexity theory and the convex product space, Diss. Univ. Groningen, 1976.Google Scholar
  19. [19]
    G. Sierksma,Carathéodory and Helly numbers of convex-product-structures, Pac. J. Math.,61 (1975), pp. 275–282.zbMATHMathSciNetGoogle Scholar

Copyright information

© Università degli Studi di Ferrara 1984

Authors and Affiliations

  • Josef Eschgfäller
    • 1
  1. 1.Istituto di Matematica dell'UniversitàFerrara

Personalised recommendations