Folia Geobotanica et Phytotaxonomica

, Volume 22, Issue 4, pp 339–354 | Cite as

Succession of vegetation on dumps from strip coal mining, N. W. Bohemia, Czechoslovakia

  • Karel Prach


Folia Geobot. Phytotax., Praha, 22: 339–354.—The primary succession of vegetation (higher plants) was studied on large dumps from brown coal mining in N.W. Bohemia, Czechoslovakia. Three differently aged stages were investigated (1977–1986), using permanent plots and transects. Changes in the species composition, the participation of life forms, and the species diversity were expressed on the basis of cover data for a period of 30 years of the succession. The data were processed by an ordination technique (DCA).


Primary succession Higher plants Dumps from brown coal mining Species composition Species diversity Ordination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Archibold O. W. (1980): Seed input as a factor in the regeneration of strip-mine wastes in Saskatchewan.—Can. J. Bot., Ottawa, 58: 1490–1495.Google Scholar
  2. Austin M. P. (1981): Permanent quadrats: An interface for theory and practice.—Vegetatio, The Hague, 46: 1–10.CrossRefGoogle Scholar
  3. Bejček V. (1983): Succession and productivity of small mammals on spoil banks of the Most basin.—Studie ČSAV, Praha, 24: 1–70. (In Czech, Engl. abstr.)Google Scholar
  4. Bejček V. etTyrner P. (1980): Primary succession and species diversity of avian communities on spoil banks after surface mining of lignite in the Most basin (North-western Bohemia).— Folia Zool., Brno, 29: 67–77.Google Scholar
  5. Bell T. J. etUngar I. A. (1981): Factors affecting the establishment of natural vegetation on a coal strip mine spoil bank in southeastern Ohio.—Amer. Midl. Natur., Notre Dame, 105: 19–31.CrossRefGoogle Scholar
  6. Bornkamm R. (1981): Rates of changes in vegetation during secondary succession.— Vegetatio, The Hague, 47: 213–220.CrossRefGoogle Scholar
  7. Bramble W. C. etAshley R. H. (1955): Natural revegetation of spoil banks in central Pennsylvania.—Ecology, Durham, 36: 417–423.CrossRefGoogle Scholar
  8. Connell J. H. etSlatyer R. O. (1977): Mechanisms of succession in natural communities and their role in community stability and organization.—Amer. Natur., Chicago, 111: 1119–1144.Google Scholar
  9. Gadgil M. etSolbrig O. T. (1972): The concept of r- and K-selection: evidence from wild flowers and some theoretical consideration.—Amer. Natur., Chicago, 106: 14–31.Google Scholar
  10. Gauch H. G., jun. (1982): Multivariate analysis in community ecology.—Cambridge, 298 p.Google Scholar
  11. Grime J. P. (1979): Plant strategies and vegetation processes.—Chichester, 222 p.Google Scholar
  12. Hayashi I. (1979): Secondary succession of herbaceous communities in Japan.—Seed germination and shade tolerance of seedlings of the dominants.—Bull. Yokoh. Phytosoc. Soc., Yokohama, 16: 407–414.Google Scholar
  13. Hejkal J. (1985): The development of a carabid fauna (Coleoptera, Carabidae) on spoil banks under conditions of primary succession.—Acta Ent. Bohemosl., Praha, 82: 321–346.Google Scholar
  14. Hill M. O. (1979): Decorana, a Fortran programme for Detrended Correspondence Analysis and Reciprocal Averaging.—Cornell University Press, Ithaca.Google Scholar
  15. Huston M. (1979): A general hypothesis of species diversity.—Amer. Natur., Chicago, 113: 81–101.Google Scholar
  16. Jonáš F. (1972): Soil formation on spoil banks composed of grey miocene clays in the area of the North-Bohemian lignite mining district.—Lesnictví, Praha, 18: 117–141. (in Czech, Engl. sum.)Google Scholar
  17. Kershaw A. K. (1973): Quantitative and dynamic plant ecology. 2nd ed.—London.Google Scholar
  18. Kiesel G., Mahn E.-G. etTauchnitz J. G. (1985): Zum Einfluss des Deponienstandortes auf die Vegetationsstruktur und Verlauf der Sekundärsukzession.—Hercynia, N. F., Leipzig, 22: 72–102.Google Scholar
  19. Knapp R. (Ed.) (1974): Vegetation dynamics.—The Hague, 364 p.Google Scholar
  20. Kropáč Z. (1966): Estimation of weed seeds in arable soil.—Pedobiologia, Jena, 6: 105–128.Google Scholar
  21. Lukešová A. etKomárek J. (1987): Succession of soil algae on dumps from strip coalmining in the Most Region (Czechoslovakia).—Folia Geobot. Phytotax., Praha, 22: 355–362.Google Scholar
  22. MacMahon J. A. (1980): Ecosystems over time: succession and other types of change.— In:Waring R. H. (Ed.): Forests: fresh perspectives from ecosystem analysis, p. 27–58.— Corvallis.Google Scholar
  23. Neuhäuslová Z. etKolbek J. (Eds.) (1982): A list of higher plants, bryophytes and lichens of Central Europe used in the bank of geobotanical data in the Botanical Inst., Czech. Acad. Sci.—Botanický ústav, Průhonice, 224 p.Google Scholar
  24. Peet R. K. (1978): Forest vegetation of the Colorado Front Range: patterns of species diversity.—Vegetatio, The Hague, 37: 65–78.CrossRefGoogle Scholar
  25. Peet R. K. etChristensen N. L. (1980): Succession: a population process.—Vegetatio, The Hague, 43: 131–140.CrossRefGoogle Scholar
  26. Prach K. (1983): A contribution to problems of ecological succession.—Ms. (Thesis, in Czech).Google Scholar
  27. Prach K. (1984): Selected results of the study of succession on dumps from brown coal mining (Most Region, N. W. Bohemia).—Acta Bot. Slov. Acad. Sci. Slov., Ser. A, Suppl. 1, 1984: 257–261.Google Scholar
  28. Prach K. (1986a): Colonization of dumps from coal mining by higher plants.—Ekológia (ČSSR), Bratislava, 5: 421–424.Google Scholar
  29. Prach K. (1986b): Succession across an environmental gradient.—Ekológia (ČSSR), Bratislava, 5: 425–430.Google Scholar
  30. Prach K. (1987): Life cycles of plants in relation to temporal variation of population and communities (in Czech, Engl. summ.).—Preslia, Praha, (in press).Google Scholar
  31. Pyšek A. (1977): Sukzession der Ruderalpflanzengesellschaften von Gross-Plzeň.—Preslia, Praha, 49: 161–179.Google Scholar
  32. Rejmánek M. (1979): Stability and complexity in biotic communities: Theoretical and empirical approach.—In:Ružička M. (Ed.): Proc. 5th Intern. Symp. Probl. Ecol. Land. Res., p. 65–72.—Bratislava.Google Scholar
  33. Sindelar B. W. etPlantenberg P. L. (1978): Establishment, succession, and stability of vegetation on surface mined lands in eastern Montana.—Montana State Univ. Press, Bozeman, 211 p.Google Scholar
  34. Štýs S. (Ed.) (1981): Reclamation of areas disturbed by mining of raw materials (in Czech).—Praha.Google Scholar
  35. Toběrná V. (1969): Colonization of spoil banks in the Most area by plant communities (in Czech).—Mostecko-Litvínovsko Reg. Stud., Most, 6: 23–44.Google Scholar
  36. Toběrná V. (1973): Phytosociological characteristics of selected plant communities on some dumps in the Most Basin.—Ms. (Thesis, in Czech)Google Scholar
  37. Toběrná V. (1980): Modell eines zwanzigjährigen Besiedlungsvorganges der Kippen im Most-Gebiet durch Pflanzen.—In:Spálený J. (Ed.): Proceedings of the 3rd Intern. Conf. Bioindic. Deterior. Reg., Sept. 1977, Liblice, Czechoslovakia, p. 109–113.—Praha.Google Scholar
  38. Volf F. etPyšek A. (1986): Vegetation on waste banks in a lignit district in north Bohemia (in Czech).—Sborn. VŠZ v Praze, Agron. Fak., Ser. Phytotechn., České Budějovice, 3: 107–125.Google Scholar
  39. Whittaker R. H. (1972): Evolution and measurement of species diversity.—Taxon, Utrecht, 21: 213–251.CrossRefGoogle Scholar
  40. Whittaker R. H. (1974): Climax concepts and recognition.—In:Knapp R. (Ed.): Vegetation dynamics, p. 139–154.—The Hague.Google Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 1987

Authors and Affiliations

  • Karel Prach
    • 1
  1. 1.Institute of BotanyCzechoslovak Academy of SciencesTřeboňCzechoslovakia

Personalised recommendations