American Potato Journal

, Volume 55, Issue 10, pp 549–560 | Cite as

Ionic balance and growth of potatoes as affected by N plus P fertilization

  • P. N. Soltanpour
  • C. V. Cole


Potato plants were grown in the San Luis Valley of Colorado under irrigation with different N and P levels applied to the soil. Growth rate of stems, leaves and tubers was measured. At three different growth stages the concentration of total N and organic anions or organic salts was determined. The organic anions (C-A) were assumed to equal the difference between the milliequivalents of cations (Na+, K+, Ca++, Mg++) and the milliequivalents of inorganic anions (Cl, NO3 , H2PO4, SO4 =) in the tissues. Application of N and P fertilizers increased leaf, stem, and tuber growth rates and, consequently, yields. Unfertilized plants had a high level of organic anions. Fertilization increased organic N, NO3 -N, and P but decreased K and (C-A) in leaves and stems, except for the last leaf sampling where (C-A) of the fertilized plants had increased to the level of (C-A) in unfertilized plants. Fertilization increased Ca and Mg concentrations in stems. Fertilization decreased concentration of total cations and increased P in tubers. The N and (C-A) levels in leaves and stems associated with optimum tuber yield varied linearly with time with the former decreasing and the latter increasing with time. The tuber (C-A) decreased with time.

Key Words

Potato leaf stem and tuber growth rate nitrogen efficiency potato composition nitrate levels in potato tubers Solanum tuberosum 


Se sembraron plantas de papa en el valle de San Luis, Colorado (USA) bajo irrigación con diferentes niveles de N y P aplicados al suelo.

Se midió la tasa de crecimiento de tallos, hojas y tubérculos.

Se determino la concentración de N total y de aniones orgánicos o sales orgánicas a tres estados diferentes de crecimiento.

Se asumió que en los tejidos los aniones orgánicos (C-A) igualaban la diferencia entre los miliequivalentes de cationes (Na+, K+, Ca++, Mg++) y los miliequivalentes de aniones inorgánicos (Cl, NO3 , H2PO4 , SO4 = ).

La aplicación de N y P aumentó las tasas de crecimiento de hojas, tallos y tubérculos y, consecuentemente, el rendimiento.

Las plantas no fertilizadas, tuvieron un nivel más alto de aniones orgánicos (C-A).

La fertilización aumentó el Nitrógeno orgánico, Nitrógeno NO3 y P, pero disminuyó el K. (C-A) de las plantas fertilizadas aumentó hasta el nivel de (C-A) en plantas no fertilizadas.

La fertilización aumentó la concentración de Ca y Mg en los tallos. En los tubérculos, la fertilización disminuyó la concentración total de cationes y aumentó el P.

Los niveles de N y (C-A) en hojas y tallos asociados con rendimientos óptimos de tubérculos, varió linealmente con el tiempo, disminuyendo el primero y aumentando el segundo.

En los tubérculos (C-A) disminuyó con el tiempo.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Banwart, W.L. and W.H. Pierre. 1975(a). Cation-Anion balance of field-grown crops. I. Effect of nitrogen fertilization. Agron J 67: 14–19.CrossRefGoogle Scholar
  2. 2.
    Banwart, W.L. and W.H. Pierre. 1975(b). Cation-Anion balance of field-grown crops. II. Effect of P and K fertilization and soil pH. Agron J 67: 20–25.CrossRefGoogle Scholar
  3. 3.
    Carmer, S.G. and M.R. Swanson. 1971. Detection of differences between means: A Monte Carlo study of five pairwise multiple comparison procedures. Agron J 63: 940–945.CrossRefGoogle Scholar
  4. 4.
    Dijkshoorn, W. 1958. Nitrate accumulation, nitrogen balance and cation-anion ratio during the regrowth of perennial ryegrass. Neth J Agric Sci 6: 211–221.Google Scholar
  5. 5.
    Follett, R.F., and G.A. Reichman. 1973. Ionic balance for barley as influenced by P fertility, water and soil temperature. Agron J 65: 477–481.CrossRefGoogle Scholar
  6. 6.
    Kirkby, E.A., and P.C. DeKock. 1965. The influence of age on cation-anion balance in the leaves of brussels sprouts. Pflanzenernahr Dung u Bodenk 111: 197–203.CrossRefGoogle Scholar
  7. 7.
    Soltanpour, P.N. 1969(a). Accumulation of drymatter and N, P, K by Russet Burbank, Oromonte and Red McClure potatoes. Potato J 46: 111–119.CrossRefGoogle Scholar
  8. 8.
    Soltanpour, P.N. 1969(b). Effect of nitrogen, phosphorus and zinc placement on yield and composition of potatoes. Agron J 61: 288–289.CrossRefGoogle Scholar
  9. 9.
    Ulrich, A. 1941. Metabolism of non-volatile organic acids in excised barley roots as related to cation-anion balance during salt accumulation. Am J Bot 28: 526–537.CrossRefGoogle Scholar
  10. 10.
    Watanabe, F.S., S.R. Olsen, and C.V. Cole. 1971. Ionic balance and growth of five plant species in four soils. Agron J 63: 23–28.CrossRefGoogle Scholar
  11. 11.
    Wit, C.T. de, W. Dijkshoorn, and J.C. Noggle. 1963. Ionic balance and growth of plants. Versl Landbouwkd Onderz 69. 15, Wageningen.Google Scholar

Copyright information

© Springer 1978

Authors and Affiliations

  • P. N. Soltanpour
    • 1
  • C. V. Cole
    • 2
  1. 1.Department of AgronomyColorado State UniversityFort Collins
  2. 2.USDAFt. Collins

Personalised recommendations