Plant and Soil

, Volume 122, Issue 1, pp 59–65 | Cite as

Radial gas diffusion from roots of rice (Oryza sativa L.) and Kallar grass (Leptochloa fusca L. Kunth), and effects of inoculation withAzospirillum brasilense Cd

  • J. Ueckert
  • T. Hurek
  • I. Fendrik
  • E. -G. Niemann


Cortical root air space (aerenchyma) helps rice and Kallar grass to survive flooding conditions. The dependence of the oxygen concentration in the rhizosphere on the root aerenchyma volume, the plant age,-species and plant respiration is described. Additionally diffusional effects of different types of gases are evaluated. Inoculation of the rhizosphere with the micro-aerobically N2-fixing microorganismAzospirillum brasilense Cd brought about an increased oxygen concentration in the rhizosphere by the factor 3.3 for rice and 5.3 for Kallar grass. This effect is thought to be due to enhanced root cell wall permeability probably caused by IAA-like phytohormones released by the bacteria.

Key words

aerenchyma Azospirillum colonization gas diffusion Kallar grass N2-fixation porosity rice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong W 1971 Radial oxygen losses from intact rice roots as affected by distance from the apex, respiration and water-logging. Physiol. Plant. 25, 192–197.CrossRefGoogle Scholar
  2. Armstrong W 1972 A re-examination of the functional significance of aerenchyma. Physiol. Plant. 27, 173–177.CrossRefGoogle Scholar
  3. Armstrong W and Gaynard T J 1976 The critical oxygen pressure in intact plants. Physiol. Plant. 37, 200–206.CrossRefGoogle Scholar
  4. Armstrong W 1979 Aeration in higher plants.In Advances in Botanical Research. Ed. H W Woolhouse. pp 225–332. Academic Press Inc., London.Google Scholar
  5. Barak R I 1982 Aerotactic response ofAzospirillum brasilense. J. Bacteriol. 152, 643–649.PubMedGoogle Scholar
  6. Barber D A and Williams W T 1961 The functional significance of aerenchyma in plants. Symp. Soc. Exp. Biol. 15, 132.Google Scholar
  7. Bradford K J and Yang S F 1981 Physiological responses to water-logging. Hort. Sci. 16, 3–34.Google Scholar
  8. Campell R and Drew M C 1983 Electron microscopy of gas space (aerenchyma) formation in adventitious roots ofZea mays L. subjected to oxygen shortage. Planta 157, 350–357.CrossRefGoogle Scholar
  9. Conlin T S S and Crowder A A 1989 Location of radial oxygen loss and zones of potential iron uptake in a grass and two nongrass emergent species. Can. J. Bot. 67, 717–722.CrossRefGoogle Scholar
  10. Drew M C, Jackson M B and Giffard S 1979 Ethylene-promoted adventitious rooting and development of cortical air spaces (Aerenchyma) in roots may be adaptive responses to flooding inZea mays L. Planta 147, 83–88.CrossRefGoogle Scholar
  11. Drew M C, Jackson M B and Campbell R 1981 Inhibition of gas space (aerenchyma) by silver ions formation in adventitious roots ofZea mays L. subjected to exogenous ethylene or to oxygen deficiency. Planta 153, 217–224.CrossRefGoogle Scholar
  12. Greenwood D J 1967 Studies on the transport of oxygen through the stems and roots of vegetable seedlings. New Phytol. 66, 337–347.CrossRefGoogle Scholar
  13. Harari A, Kigel J and Okon Y 1989 Involvement of IAA in the interaction betweenAzospirillum brasilense andPanicum miliaceum roots.In Nitrogen Fixation with Non-Legumes. Eds. F A Skinner, R M Boddey and I Fendrik. pp 227–234. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  14. Healy M T and Armstrong W 1972 The effectiveness of internal oxygen transport in a mesophyte (Pisum sativum L.). Planta 103, 302–309.CrossRefGoogle Scholar
  15. Hoagland D R and Arnon D I 1950 The water culture method for growing plants without soil. Circular 347, Berkeley, CA.Google Scholar
  16. Hurek T, Reinhold B, Fendrik I and Niemann E G 1987 Root-zone-specific oxygen tolerance ofAzospirillum spp. and diazotrophic rods closely associated with Kallar grass. Appl. Environm. Microbiol. 53, 163–169.Google Scholar
  17. Jensen C R, Stolzy L H and Letey J 1967 Tracer studies of oxygen diffusion through roots of barley, corn and rice. Soil. Sci. 103, 23–29.CrossRefGoogle Scholar
  18. Jensen C R, Luxmore R J, Van Gundy S D and Stolzy L H 1969 Root air space measurements by a pycnometer method. Agron. J. 61, 474–475.CrossRefGoogle Scholar
  19. John C D, Limpinuntana V and Greenway H 1974 Adaption of rice to anaerobiosis. Aust. J. Plant Physiol. 1, 513–520.CrossRefGoogle Scholar
  20. Justin S H F W and Armstrong W 1987 The anatomical characteristics of roots and plant response to soil flooding. New Phytol. 106, 465–495.Google Scholar
  21. Kawase I 1979 Role of cellulase in aerenchyma development in sunflower. Am. J. Bot. 65, 736–740.CrossRefGoogle Scholar
  22. Luxmore R J, Stolzy L H and Letey J 1970 Oxygen diffusion in the soil-plant system. Agron. J. 62, 317–332.CrossRefGoogle Scholar
  23. Malik K A, Aslam Z and Naqvi M 1986 Kallar grass—a plant for saline land. Ghulamali Printers, Lahore.Google Scholar
  24. Mapson L W 1969 Biogenesis of ethylene. Biol. Rev. 44, 155–187.PubMedCrossRefGoogle Scholar
  25. Morgenstern E and Okon Y 1987 The effect ofAzospirillum brasilense and auxin on root morphology in seedlings ofSorghum bicolor × Sorghum sudanense. Arid Soil Reh. 1, 115–127.Google Scholar
  26. Reinhold B, Hurek T and Fendrik I 1987 Cross-reaction of predominant nitrogen-fixing bacteria with enveloped, round bodies in the root interior of Kallar grass. Appl. Env. Microbiol. 53, 889–891.Google Scholar
  27. Saglio P H, Raymond P and Pradet A 1983 Oxygen transport and root respiration of maize seedlings. Plant Physiol. 72, 1035–1039.PubMedCrossRefGoogle Scholar
  28. Sifton H B 1957 Airspace tissue in plants. Bot. Rev. 13, 303–312.Google Scholar
  29. Tien T M, Gaskins M H and Hubbel D H 1979 Plant growth substances produced byAzospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl. Env. Microbiol. 37, 1016–1024.Google Scholar
  30. Umali-Garcia M, Hubbel D H, Gaskins M H and Dazzo F B 1980 Association of Azospirillum with grass roots. Appl. Env. Microbiol. 39, 219–226.Google Scholar
  31. Zimmer W and Bothe H 1989 The phytohormonal interactions between Azospirillum and wheat.In Nitrogen Fixation with Non-Legumes. Eds. F A Skinner, R M Boddey and I Fendrik. pp 137–145. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • J. Ueckert
    • 1
  • T. Hurek
    • 1
  • I. Fendrik
    • 1
  • E. -G. Niemann
    • 1
  1. 1.Institute of BiophysicsUniversity of HannoverHannover 21FRG

Personalised recommendations