Skip to main content
Log in

Radial gas diffusion from roots of rice (Oryza sativa L.) and Kallar grass (Leptochloa fusca L. Kunth), and effects of inoculation withAzospirillum brasilense Cd

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Cortical root air space (aerenchyma) helps rice and Kallar grass to survive flooding conditions. The dependence of the oxygen concentration in the rhizosphere on the root aerenchyma volume, the plant age,-species and plant respiration is described. Additionally diffusional effects of different types of gases are evaluated. Inoculation of the rhizosphere with the micro-aerobically N2-fixing microorganismAzospirillum brasilense Cd brought about an increased oxygen concentration in the rhizosphere by the factor 3.3 for rice and 5.3 for Kallar grass. This effect is thought to be due to enhanced root cell wall permeability probably caused by IAA-like phytohormones released by the bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong W 1971 Radial oxygen losses from intact rice roots as affected by distance from the apex, respiration and water-logging. Physiol. Plant. 25, 192–197.

    Article  Google Scholar 

  • Armstrong W 1972 A re-examination of the functional significance of aerenchyma. Physiol. Plant. 27, 173–177.

    Article  Google Scholar 

  • Armstrong W and Gaynard T J 1976 The critical oxygen pressure in intact plants. Physiol. Plant. 37, 200–206.

    Article  CAS  Google Scholar 

  • Armstrong W 1979 Aeration in higher plants.In Advances in Botanical Research. Ed. H W Woolhouse. pp 225–332. Academic Press Inc., London.

    Google Scholar 

  • Barak R I 1982 Aerotactic response ofAzospirillum brasilense. J. Bacteriol. 152, 643–649.

    PubMed  CAS  Google Scholar 

  • Barber D A and Williams W T 1961 The functional significance of aerenchyma in plants. Symp. Soc. Exp. Biol. 15, 132.

    Google Scholar 

  • Bradford K J and Yang S F 1981 Physiological responses to water-logging. Hort. Sci. 16, 3–34.

    Google Scholar 

  • Campell R and Drew M C 1983 Electron microscopy of gas space (aerenchyma) formation in adventitious roots ofZea mays L. subjected to oxygen shortage. Planta 157, 350–357.

    Article  Google Scholar 

  • Conlin T S S and Crowder A A 1989 Location of radial oxygen loss and zones of potential iron uptake in a grass and two nongrass emergent species. Can. J. Bot. 67, 717–722.

    Article  CAS  Google Scholar 

  • Drew M C, Jackson M B and Giffard S 1979 Ethylene-promoted adventitious rooting and development of cortical air spaces (Aerenchyma) in roots may be adaptive responses to flooding inZea mays L. Planta 147, 83–88.

    Article  CAS  Google Scholar 

  • Drew M C, Jackson M B and Campbell R 1981 Inhibition of gas space (aerenchyma) by silver ions formation in adventitious roots ofZea mays L. subjected to exogenous ethylene or to oxygen deficiency. Planta 153, 217–224.

    Article  CAS  Google Scholar 

  • Greenwood D J 1967 Studies on the transport of oxygen through the stems and roots of vegetable seedlings. New Phytol. 66, 337–347.

    Article  Google Scholar 

  • Harari A, Kigel J and Okon Y 1989 Involvement of IAA in the interaction betweenAzospirillum brasilense andPanicum miliaceum roots.In Nitrogen Fixation with Non-Legumes. Eds. F A Skinner, R M Boddey and I Fendrik. pp 227–234. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Healy M T and Armstrong W 1972 The effectiveness of internal oxygen transport in a mesophyte (Pisum sativum L.). Planta 103, 302–309.

    Article  Google Scholar 

  • Hoagland D R and Arnon D I 1950 The water culture method for growing plants without soil. Circular 347, Berkeley, CA.

  • Hurek T, Reinhold B, Fendrik I and Niemann E G 1987 Root-zone-specific oxygen tolerance ofAzospirillum spp. and diazotrophic rods closely associated with Kallar grass. Appl. Environm. Microbiol. 53, 163–169.

    CAS  Google Scholar 

  • Jensen C R, Stolzy L H and Letey J 1967 Tracer studies of oxygen diffusion through roots of barley, corn and rice. Soil. Sci. 103, 23–29.

    Article  CAS  Google Scholar 

  • Jensen C R, Luxmore R J, Van Gundy S D and Stolzy L H 1969 Root air space measurements by a pycnometer method. Agron. J. 61, 474–475.

    Article  Google Scholar 

  • John C D, Limpinuntana V and Greenway H 1974 Adaption of rice to anaerobiosis. Aust. J. Plant Physiol. 1, 513–520.

    Article  CAS  Google Scholar 

  • Justin S H F W and Armstrong W 1987 The anatomical characteristics of roots and plant response to soil flooding. New Phytol. 106, 465–495.

    Google Scholar 

  • Kawase I 1979 Role of cellulase in aerenchyma development in sunflower. Am. J. Bot. 65, 736–740.

    Article  Google Scholar 

  • Luxmore R J, Stolzy L H and Letey J 1970 Oxygen diffusion in the soil-plant system. Agron. J. 62, 317–332.

    Article  Google Scholar 

  • Malik K A, Aslam Z and Naqvi M 1986 Kallar grass—a plant for saline land. Ghulamali Printers, Lahore.

    Google Scholar 

  • Mapson L W 1969 Biogenesis of ethylene. Biol. Rev. 44, 155–187.

    Article  PubMed  CAS  Google Scholar 

  • Morgenstern E and Okon Y 1987 The effect ofAzospirillum brasilense and auxin on root morphology in seedlings ofSorghum bicolor × Sorghum sudanense. Arid Soil Reh. 1, 115–127.

    Google Scholar 

  • Reinhold B, Hurek T and Fendrik I 1987 Cross-reaction of predominant nitrogen-fixing bacteria with enveloped, round bodies in the root interior of Kallar grass. Appl. Env. Microbiol. 53, 889–891.

    CAS  Google Scholar 

  • Saglio P H, Raymond P and Pradet A 1983 Oxygen transport and root respiration of maize seedlings. Plant Physiol. 72, 1035–1039.

    Article  PubMed  CAS  Google Scholar 

  • Sifton H B 1957 Airspace tissue in plants. Bot. Rev. 13, 303–312.

    Google Scholar 

  • Tien T M, Gaskins M H and Hubbel D H 1979 Plant growth substances produced byAzospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl. Env. Microbiol. 37, 1016–1024.

    CAS  Google Scholar 

  • Umali-Garcia M, Hubbel D H, Gaskins M H and Dazzo F B 1980 Association of Azospirillum with grass roots. Appl. Env. Microbiol. 39, 219–226.

    CAS  Google Scholar 

  • Zimmer W and Bothe H 1989 The phytohormonal interactions between Azospirillum and wheat.In Nitrogen Fixation with Non-Legumes. Eds. F A Skinner, R M Boddey and I Fendrik. pp 137–145. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueckert, J., Hurek, T., Fendrik, I. et al. Radial gas diffusion from roots of rice (Oryza sativa L.) and Kallar grass (Leptochloa fusca L. Kunth), and effects of inoculation withAzospirillum brasilense Cd. Plant Soil 122, 59–65 (1990). https://doi.org/10.1007/BF02851910

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02851910

Key words

Navigation