American Potato Journal

, Volume 72, Issue 8, pp 437–445 | Cite as

Erwinia soft rot resistance of potato cultivars transformed with a gene construct coding for antimicrobial peptide cecropin B is not altered

  • Sjefke J. H. M. Allefs
  • Dion E. A. Florack
  • Coosje Hoogendoorn
  • Willem J. Stiekema


Cecropin B is a peptide of approximately 4 kDA which shows antimicrobial activityin vitro against Gram positive and Gram negative bacteria. Potato cvs Agria, Bintje, Karnico, Kondor and Producent were transformed with a gene construct encoding a cecropin B precursor polypeptide. In total, 49 independent transgenic potato clones were obtained. Northern blot analysis of these plants revealed that the introduced gene was transcribed to detectable levels in almost all plants, the highest transcription level being approximately 0.6% of total mRNA. No cecropin B peptide could be detected in transgenic plants, probably as a result of rapid proteolytic degradation of newly synthesized cecropin B by potato endogenous proteases. Neither small tubers of a group of 11 clones with moderate to high transcription levels nor slices from field grown tubers of any of the transgenic clones obtained, showed significantly (P<0.01) less rot after inoculation withErwinia carotovora subspatroseptica orE. chrysanthemi, the plant pathogenic bacteria that cause potato soft rot.

Additional Key Words

Plant pathogenic bacteria transcription level transgene expression transgenic plants 


Cecropin B es un peptido de aproximadamente 4 kDA que muestra actividad antimicrobianain vitro contra las bacterias Gram positivas y Gram negativas. Los cultivares de papa Agria, Bintje, Karnico, Kondor y Producent fueron transformados con un prototipo de gene que codifica un polipeptido precursor de cecropin B. En total, se obtuvieron 49 clones independientes de papa transgénica. El análisis de estas plantas, mediante la transferencia del RNA a placas de nitrocelulosa (Northern Blot Analysis), reveló que el gene introducido fue transcrito a niveles detectables en casi todas las plantas, siendo el nivel más alto de transcription de aproximadamente 0.6% del mRNA total. No se pudo detectar al peptido de cecropin B en las plantas transgénicas, probablemente debido a una degradación proteolítica rápida del cecropin B nuevamente sintetizado, por las proteasas endogenas de la papa. Ni los pequenos tubérculos de un grupo de 11 clones con niveles de transcriptión moderados a altos ni las rebanadas de tubérculos obtenidos del campo, de cualesquiera de los clones transgénicos obtenidos, mostraron una pudrición significativamente menor (P<0.01 ) después de la inoculation conErwinia carotovora subsp.atroseptica oE. chrysanthemi, las bacterias patógenas causantes de la pudrición blanda de la papa.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Boman, H.G. and D. Hultmark. 1987. Cell-free immunity in insects. Ann Rev Microbiol 41:103–126.CrossRefGoogle Scholar
  2. 2.
    Destéfano-Beltrán L., P.G. Nagpala, M.S. Cetiner, J.H. Dodds and J.M. Jaynes. 1990. Enhancing bacterial and fungal disease resistance in plants: Application to potato.In: Vayda, M.E. and W.D. Park (Eds.), The molecular and cellular biology of the potato, C.A.B. International Publishers, Oxon, UK. pp 205–221.Google Scholar
  3. 3.
    De Wit, P.J.G.M. and G. Spikman. 1982. Evidence for the occurrence of race and cultivar-specific elicitors of necrosis in intercellular fluids of compatible interactions ofCladosporium fulvum and tomato. Physiol Plant Path 2:1–11.Google Scholar
  4. 4.
    Florack, D., S. Allefs, R. Bollen, D. Bosch, B. Visser and W. Stiekema. 1995. Expression of giant silkmoth cecropin B encoding genes in transgenic tobacco. Transgenic Research 4:132–141.PubMedCrossRefGoogle Scholar
  5. 5.
    Florack, D.E.A., W.G. Dirkse, B. Visser, F. Heidekamp and W.J. Stiekema. 1994b. Expression of biologically active hordothionins in tobacco. Effects of pre-and pro-sequences at the amino and carboxyl termini of the hordothionin precursor on mature protein expression and sorting. Plant Mol Biol 24:83–96.PubMedCrossRefGoogle Scholar
  6. 6.
    Hightower, R., C. Baden, E. Penzes and P. Dunsmuir. 1994. The expression of cecropin peptide in transgenic tobacco does not confer resistance toPseudovwnas syringae pvtabaci. Plant Cell Rep 13:295–299.CrossRefGoogle Scholar
  7. 7.
    Hoekema, A., MJ. Huisman, L. Molendijk, P.J.M. van den Elzen and B.J.C. Cornelissen. 1989. The genetic engineering of two commercial potato cultivars for resistance to potato virus X. Bio/Technology 7:273–278.CrossRefGoogle Scholar
  8. 8.
    Jarret, R.L., P.M. Hasegawa and H.T. Erickson. 1980. Factors affecting shoot initiation from tuber discs of potato (Solanum tuberosum). Physiol Plant 49:177–184.CrossRefGoogle Scholar
  9. 9.
    Jaynes, J.M., P. Nagpala, L. Destéfano-Beltrán, J.H. Huang, J. Kim, T. Denny and S. Cetiner. 1993. Expression of a Cecropin B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused byPseudomonas solanacearum. Plant Sci 89:43–53.CrossRefGoogle Scholar
  10. 10.
    Jia, S-R., Y. Xie, T. Tang, L-X. Feng, D-S. Cao, Y-L. Zhao, J. Yuan, Y-Y. Bai, C-X. Jiang, J.M. Jaynes and J.D. Dodds. 1993.In: You, C., Z. Chen and Y Ding (Eds.), Genetic engineering of Chinese potato cultivars by introducing antibacterial polypeptide gene. Biotechnology in agriculture, Kluwer Academic Publishers, The Netherlands. pp 208–212.Google Scholar
  11. 11.
    Lapwood, D.H. and P.J. Read. 1985. A simplified slice method for assessing tuber susceptibility of potato cultivars toErwinia carotovora subsp.atroseptica. Plant Pathol 34:284–286.CrossRefGoogle Scholar
  12. 12.
    Lee, J-Y., A. Boman, S. Chuanxin, M. Andersson, H. Jörnvall, V. Mutt and H.G. Boman. 1989. Antibacterial peptides from pig intestine: Isolation of a mammalian cecropin. Proc Natl Acad Sci USA 86:9159–9162.PubMedCrossRefGoogle Scholar
  13. 13.
    Nordeen, R.O., S.L. Sinden, J.M. Jaynes and L.D. Owens. 1992. Activity of cecropin SB37 against protoplasts from several plant species and their bacterial pathogens. Plant Sci 82:101–107.CrossRefGoogle Scholar
  14. 14.
    Mills, D. and F.A. Hammerschlag. 1993. Effect of cecropin B on pathogens, protoplasts, and cells. Plant Sci 93:143–150.CrossRefGoogle Scholar
  15. 15.
    Stiekema, W.J., F. Heidekamp, D. Louwerse, H.A. Verhoeven and P. Dijkhuis. 1988. Introduction of foreign genes into potato cultivars Bintje and Désirée using anAgrobacterium tumefaciens binary vector. Plant Cell Rep 7:47–50.CrossRefGoogle Scholar

Copyright information

© Springer 1995

Authors and Affiliations

  • Sjefke J. H. M. Allefs
    • 2
  • Dion E. A. Florack
    • 1
  • Coosje Hoogendoorn
    • 1
  • Willem J. Stiekema
    • 1
  1. 1.DLO-Centre for Plant Breeding and Reproduction Research (CPRO-DLO)WageningenThe Netherlands
  2. 2.Agrico ResearchEmmeloordThe Netherlands

Personalised recommendations