Metallurgical Transactions A

, Volume 22, Issue 11, pp 2723–2732 | Cite as

Containerless processing and rapid solidification of Nb-Si alloys of hypereutectic composition

  • G. A. Bertero
  • W. H. Hofmeister
  • M. B. Robinson
  • R. J. Bayuzick


Niobium-silicon alloys from 21 to 27 at. pct Si were rapidly solidified employing a combination of electromagnetic levitation and splat-quenching techniques. Levitated liquid drops were over-heated or undercooled to different temperatures in the electromagnetic lévitation field and sub-sequently released into a splat-quenching apparatus. Some undercooled drops were allowed to solidify in the coil. Analytical scanning (SEM) and transmission electron microscopy (TEM) as well as X-ray diffraction were used to characterize the microstructures of the processed samples. In the range of compositions studied, the splat-quenched drops always formed the tetragonal Nb3Si phase directly from the liquid. On the other hand, drops solidified in the coil were characterized by the presence of the primary intermetallic Nb5Si3 and the absence of both peritectic Nb3Si and the equilibrium eutectic. In these cases, a metastable α-Nb + Β-Nb5Si3 eutectic formed. The cubic A15 Nb3Si structure was not observed in any of these experiments. The results are discussed in terms of possible metastable configurations of the Nb-Si phase diagram as well as concepts of nucleation and growth kinetics applied to the Nb3Si and Nb5Si3 intermetallics.


Metallurgical Transaction Convergent Beam Electron Diffraction Electromagnetic Levitation Chill Surface Equilibrium Eutectic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Dew-Hughes:Cryogenics, 1975, vol. 15, p. 435.CrossRefGoogle Scholar
  2. 2.
    R.M. Waterstrat, F. Haenssler, and J. Muller:J. Appl. Phys., 1979, vol. 50 (7), p. 4763.CrossRefGoogle Scholar
  3. 3.
    K. Togano, H. Kumakura, and K. Tachikawa:Phys. Lett., 1980, vol. 76A, p. 83.Google Scholar
  4. 4.
    W.K. Wang, H. Iwasaki, C. Suryanarayana, T. Masumoto, N. Toyota, T. Fukase, and F. Kogiku:J. Mater. Sci., 1982, vol. 17, pp. 1523–32.CrossRefGoogle Scholar
  5. 5.
    H. Kawamura and K. Tachikawa:Phys. Lett., 1975, vol. 55A, p. 65.Google Scholar
  6. 6.
    M.B. Robinson, R.J. Bayuzick, and W.H. Hofmeister:Adv. Space Res., 1988, vol. 8 (12), p. 321.CrossRefGoogle Scholar
  7. 7.
    NBS Monograph 25, National Bureau of Standards, U.S. Department of Commerce, 1978, Section 15, p. 44.Google Scholar
  8. 8.
    D.K. Deardorff, R.E. Siemens, P.A. Romans, and R.A. McCune:J. Less-Common Met., 1969, vol. 18, pp. 11–26.CrossRefGoogle Scholar
  9. 9.
    L. Bendersky, F.S. Biancaniello, W.J. Boettinger, and J.H. Perepezko:Mater. Sci. Eng., 1987, vol. 89, p. 151.CrossRefGoogle Scholar
  10. 10.
    D.J. Miller, J.W. Sears, and H.L. Fraser:Acta Metall., 1989, vol. 37 (4), pp. 999–1007.CrossRefGoogle Scholar
  11. 11.
    G.A. Bertero, W.H. Hofmeister, M.B. Robinson, and R.J. Bayuzick:Proc. ASM INTERNATIONAL Materials Congress, Chicago, IL, Sept. 26–30, 1988,Materials Processing in Space, V. Laxmanan, N.B. Sing, and E.W. Collings, eds., Trans Tech Publications, Aedermannsdorf, Switzerland, 1989, p. 173.Google Scholar
  12. 12.
    Yu. A. Kocherzhinskiy, L.M. Yupko, and E.A. Shishkin:Russ. Metall., 1980, vol. 1, p. 184.Google Scholar
  13. 13.
    P.R. Saham and T.V. Pruss:Phys. Lett., 1969, vol. 28A, p. 707.Google Scholar
  14. 14.
    J.L. Walker:Physical Chemistry of Process Metallurgy, Part 2, Interscience, New York, NY, 1961, p. 845.Google Scholar
  15. 15.
    E. Schleip, R. Willnecker, D.M. Herlach, and G.P. Gorier:Proc. 6th Int. Conf. on Rapidly Quenched Metals, Montreal, Canada, R.W. Cochrane and J.O. Ström-Olsen, eds., Elsevier Applied Science Publishers, Ltd., Essex, United Kingdom, July 1987, vol. 2, pp. 39–42.Google Scholar
  16. 16.
    W.H. Hofmeister, R.J. Bayuzick, and M.B. Robinson:Rev. Sci. Instrum., 1990, vol. 61, p. 2220.CrossRefGoogle Scholar
  17. 17.
    G.A. Bertero, W.H. Hofmeister, M.B. Robinson, and R.J. Bayuzick:Metall. Trans. A., 1991, vol. 22A, pp. 2713–21.Google Scholar
  18. 18.
    R. Trivedi, P. Magnin, and W. Kurtz:Acta Metall., 1987, vol. 35, p. 971.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals and Materials Society, and ASM International 1991

Authors and Affiliations

  • G. A. Bertero
    • 1
  • W. H. Hofmeister
    • 2
  • M. B. Robinson
    • 3
  • R. J. Bayuzick
    • 2
  1. 1.Department of Materials Science and EngineeringStanford UniversityStanford
  2. 2.Materials Science and Engineering DepartmentVanderbilt UniversityNashville
  3. 3.Space Sciences, NASA George C. Marshall Space Flight CenterHuntsville

Personalised recommendations