Soluble (HN)2-groups

  • Gemma Parmeggiani


In this paper we investigate the class of finite soluble groups in which every subnormal subgroup has normal normalizer. In particular we prove that they areUN 2U, whereU andN 2denote finite abelian groups and of finite nilpotent groups of class at most 2 respectively.


Normal Subgroup Finite Group Maximal Subgroup Sylow Subgroup Proper Subgroup 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Best E., Taussky O.,A class of groups, Proc. Roy. Irish. Acad. Sect. A.,47 (1942), 55–62.MATHMathSciNetGoogle Scholar
  2. [2]
    Camina A.,Hypernormalizing groups, Math. Z.,100 (1967), 59–68.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Camina A.,Finite Soluble Hypernormalizing Groups, J. Algebra,8 (1968), 362–375.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Casolo C.,Gruppi finiti risolubili in cui tutti i sottogruppi subnormali hanno difetto al piú 2, Rend. Sem. Mat. Univ. Padova,70 (1984), 257–271.MathSciNetGoogle Scholar
  5. [5]
    Casolo C.,Wielandt series and defects of subnormal subgroups in finite soluble groups, Rend. Sem. Mat. Univ. Padova,87 (1992), 93–104.MATHMathSciNetGoogle Scholar
  6. [6]
    Gaschütz W.,Gruppen in denen das Normalteilersein trarsitiv ist, J. Reine Ang. Math.,198 (1957), 87–92.MATHGoogle Scholar
  7. [7]
    Gorenstein D.,Finite Groups, New York, 1968.Google Scholar
  8. [8]
    Heineken H.,Hypernormalizing Groups, J. Austral. Math. Soc. (Series A),47 (1989), 211–215.MATHMathSciNetGoogle Scholar
  9. [9]
    Hobby C.,Finite groups with normal normalizers, Can. J. Math.,20 (1968), 1256–1260.MATHMathSciNetGoogle Scholar
  10. [10]
    Huppert B.,Endliche Gruppen I, Berlin-Heidelberg-New York, 1967.Google Scholar
  11. [11]
    Mahdavianary S. K.,A special class of three-Engel groups, Arch. Math.,40 (1983), 193–199.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    McCaughan D. J., Stonehewer S. E.,Finite soluble groups whose subnormal subgroups have defect at most two, Arch. Math.,35 (1980), 56–60.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Roseblade J. E.,On groups in which every subgroup is subnormal, J. Algebra,2 (1965), 402–412.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Schenkman E.,Group Theory, Toronto-New York-London, 1965.Google Scholar
  15. [15]
    Shult E. E.,A note on splitting in solvable groups, Proc. Amer. Math. Soc.,17 (1966), 318–320.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Zacher G.,Caratterizzazione dei t-gruppi finiti risolubili, Ricerche Matematiche,1 (1952), 287–294.MathSciNetGoogle Scholar

Copyright information

© Springer 1995

Authors and Affiliations

  • Gemma Parmeggiani
    • 1
  1. 1.Dipartimento di MatematicaPadova

Personalised recommendations