Response of the equatorial western Pacific thermohaline structure to wind variation

  • Hu Dunxin
  • David Halpern


During the Global Weather Experiment oceanographic measurements were recorded during winter and summer in the western Pacific region 5°S−5°N, 160°E−175°E. The variations of the upper ocean temperature and salinity fields were produced by the large seasonal and spatial wind fluctuations. The vertical temperature structure of the thermocline at the equator, the meridional slope of the thermocline south of the equator, and the northward penetration of high salinity water were related to the direction and intensity of the zonal wind-stress.


Zonal Wind High Salinity Water Salinity Field Geostrophic Current Dynamic Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Crawford, W. R. and T. R. Osborn, 1981. Control of equatorial ocean currents by turbulent dissipation.Science 212: 539–540.CrossRefGoogle Scholar
  2. Firing, F. and R. Lukas, 1982. The geostrophic balance of the mean Pacific Equatorial Underenrrent.Transactions of the American Geophysical Union 63: 346.Google Scholar
  3. Halpern, D., 1980. A Pacific equatorial temperature section from 172°E to 110°W during winter and spring 1979.Deep-Sea Research 27: 931–940.CrossRefGoogle Scholar
  4. Hisard, P., Y. Magnier and B. Wauthy, 1969. Comparison of the hydrographic structure of equatorial waters north of New Guinea and at 170°E.Journal of Marine Research 27: 191–205.Google Scholar
  5. Hayes, S. P., 1982. A geostrophic velocity intercomparison at the equator.Transations of the American Geophysical Union 63: 346.Google Scholar
  6. Jarrige, F. and P. Rual, 1981. Measurements in the equatorial current of the Atlantic and Pacific Oceans.In: «Recent Progress in Equatorial Oceanography», Editors McCreary, J. P., Jr., D. Moore and J. M. Witte, Nova University/N.Y.I.T. Press, Ft. Lauderdale, Florida, pp 111–120.Google Scholar
  7. Knauss, J. A., 1964. Subsurface ocean currents.In:«Research in Geophysics», volume 2. Solid Earth and Interface Phenomena, editor H. Odishaw, The MIT Press, Cambridge, Massachusetts, pp. 271–290.Google Scholar
  8. Lemasson, L. and B. Piton, 1968. Anomalie dynamique de la surface de la mer le long de l’équateur dans l’ocean Pacifique.Cahier O.R.S.T.O.M., Serie Oceanographie 6(3–4): 39–45.Google Scholar
  9. Mangum, L. J., N. N. Soreide, B. D. Davies, B. D. Spell and S. P. Hayes, 1977. CTD/O2 measurements during the Equatorial Pacific Ocean Climate Study (EPOCS) in 1979. NOAA Data Report ERL PMEL-1, Pacific Marine Environmental Laboratory, Seattle, Washington. 645 pp.Google Scholar
  10. National Bureau of Oceanography of People’s Republic of China (1981a) Data in western tropical Pacific by R/VPractice. Ocean Press, Beijing, in western tropical Pacific by R/VXiangyanghong 09. Ocean Press, Beijing. 130 pp.Google Scholar
  11. Taft, B. A. and P. Kovala, 1981. Vertical sections of temperature, salinity, thermosteric anomally and zonal geostrophi velocity from NORPAX shuttle experiment. NOAA Data Report ERL PMEL-3, Pacific Marine Environmental Laboratory, Seattle, Washington. 98 pp.Google Scholar
  12. Wyrtki, K. and G. Meyers, 1976. The trade wind field over the Pacific Ocean.Journal of Applied Meteorology 15: 698–704.CrossRefGoogle Scholar
  13. Wyrtki, K. and E. B. Bennett, 1963. Vertical eddy viscosity in the Pacific Equatorial Undercurrent.Deep-Sea Research 10: 449–455.Google Scholar
  14. Wyrtki, K., E. Firing, D. Halpern, R. Knox, G. J. McNally, W. C. Patzert, E. D. Stroup, B. A. Taft and R. Williams, 1981. The Hawaii to Tahiti Shuttle Experiment.Science 211: 22–28.CrossRefGoogle Scholar

Copyright information

© Science Press 1986

Authors and Affiliations

  • Hu Dunxin
    • 1
  • David Halpern
    • 1
  1. 1.Institute of OceanologyAcademia SinicaChina

Personalised recommendations