Determining subspaces for discrete-type linear forms on commutative Banach algebras

  • Silvia Romanelli


In this paper we deal with some problems of the Korovkin-type Approximation theory concerning the convergence of nets of linear forms toward discrete-type linear forms on commutative Banach algebras. We also study the case of involutive symmetric commutative Banach algebras with identity or with bounded approximate identity. Examples and applications are presented in the context of the algebrasC0(X, C),C(X, C) andL1 (IR).


Linear Form Linear Subspace Banach Algebra Approximate Identity Linear Hull 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Altomare F.,Frontières abstraites et convergence de familles filtrèes de formes linèaires sur les algebres de Banach commutatives, Sèminaire Initiation à l'Analyse G. Choquet et al. n. 6, 21e annèe 1981/82, Publ. Math. Univ. Pierre et Marie Curie.Google Scholar
  2. [2]
    Altomare F.,Positive linear forms and their determining subspaces, (To appear in Annali di Matematica, 1989).Google Scholar
  3. [3]
    Altomare F.,Théorèmes de convergence de type Korovkin relativement à une application lineaire positive. Boll. U.M.I. 5 16-B (1979), 1013–1031.MathSciNetMATHGoogle Scholar
  4. [4]
    Altomare F., Boccaccio C.,On Korovkin-type theorems in spaces of continuous complex-valued functions, Boll. U.M.I. 6 1-B (1982), 75–86.MathSciNetMATHGoogle Scholar
  5. [5]
    Bourbaki N.,Integration, Chap. 1,2,3 et 4. Hermann, Paris (1965).MATHGoogle Scholar
  6. [6]
    Guichardet A.,Analyse harmonique commutative, Dunod, Paris (1968).MATHGoogle Scholar
  7. [7]
    Labsker L.G.,Korovkin sets in Banach spaces for sets of linear functionals, (Transl. in Math. Notes 31 (1982), n. 1–2, 47–56).MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Maltese G.,Integral representation theorems via Banach algebras, L'Enseignement Mathèmatique, IIe Séries, Tome XXV Fasc. 3–4, Juillet–Decembre 1979.Google Scholar
  9. [9]
    Rickart C.E.,General theory of Banach algebras, Van Nostrand, Princeton, 1960.MATHGoogle Scholar
  10. [10]
    Zelazko W.,Banach algebras, Elsevier, Amsterdam, 1973.MATHGoogle Scholar

Copyright information

© Springer 1989

Authors and Affiliations

  • Silvia Romanelli
    • 1
  1. 1.Università degli Studi di BariDipartimento di MatematicaBariItalia

Personalised recommendations