A general oscillation theorem for self-adjoint differential systems with applications to Sturm-Liouville eigenvalue problems and quadratic functionals

  • G. Baur
  • W. Kratz


For given 2n×2n matricesS13,S24 with rank(S13,S24)=2n\(S_{13} \bar S_{24}^T = S_{24} \bar S_{13}^T \) we consider the eigenvalue problem:u′=A(x)u+B(x)v,v′=C1(x;λ)u-AT(x)v with
$$S_{13} \left( {_{u\left( b \right)}^{ - u\left( a \right)} } \right) + S_{24} \left( {_{\upsilon \left( b \right)}^{\upsilon \left( a \right)} } \right) = 0,{\text{ }}a< b;$$
where we assume that then×n matrices,A, B, C1 satisfy:A, B, C1, ∂/∂λC1 are continuous on IR resp. IR2;B, C1 are Hermitian;B, −∂/∂λC1 are non-negative definite; and we assume the crucial normality-condition: for any solutionu, v (λ∈IR arbitrary) ∂/∂λC1u≡0 on some interval always impliesuv≡0. Then, the main result of the paper (Theorem 2) is the following oscillation result: For any conjoined basisU1(x; λ),V1(x; λ) of the differential system with fixed (with respect to λ) initial valuesU1(a), V1(a), we haven1(λ)+n2(λ)=n3(λ)+n1+n2 for λ ∈ IR with regularU1(b; λ); where\(n_i = \mathop {lim}\limits_{\lambda \to \infty } \);ni(λ),i=1,2;n1(λ) denotes number of focal points of 3U1 in [a, b);n3(λ) denotes the number of eigenvalues which are ≤λ; andn2(λ) denotes the number of negative eigenvalues of a certain Hermitian 3n×3n matrixM(λ). Moreover, it is shown how classical results (e.g. Rayleigh's principle, existence theorem) can be derived from this oscillation theorem via a generalized Picone identity (which yields also the matrixM(λ) above).

Actually these eigenvalue problems in connection with an associated functional (the linear differential system above consists of the canonical form of the Euler-Lagrange equations of a corresponding Bolza problem) are very much related to the work of W.T. Reid (Wiley 1971). Many results of this paper, including the oscillation theorem above, are extensions of an earlier paper on Sturm-Liouville eigenvalue problems (Analysis 5(1985), 97–152).


Eigenvalue Problem Hamiltonian System Differential System Riccati Equation Matrix Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Barret J.H.,Oscillation theory of ordinary linear differential equations, Advances in Math.3 (1969), 415–509.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Baur G.,Über selbstadjungierte Eigenwertprobleme bei Hamilton-Systemen, Dissertation, Ulm 1986.Google Scholar
  3. [3]
    Birkhoff G.D.,Existence and oscillation theorem of a certain boundary value problem, Trans. Amer. Math. Soc.10 (1909), 259–270.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Cimmino G.,Autosoluzioni e autovalori nelle equazioni differenziali lineari ordinarie autoaggiunte di ordine superiore, Math. Z.32 (1930), 4–58.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    Coppel W.A.,Stability and asymptotic behaviour of differential equations, Heath and Company 1965.Google Scholar
  6. [6]
    Coppel W.A.,Comparison theorems for canonical systems of differential equations, J. Math. Anal. Appl.12 (1965), 306–315.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Coppel W.A.,Disconjugacy, Springer, Lecture Notes 1971.Google Scholar
  8. [8]
    Eberhard W.,Über das asymptotische Verhalten von Lösungen der linearen Differentialgleichung M[y]=λN[y] für grosse Werte von |λ|, Math. Z.119 (1971), 160–170.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    Hestenes M.R.,Calculus of variations and optimal control theory, R.E. Krieger Publishing Company 1980.Google Scholar
  10. [10]
    Kamke E.,Über die definiten selbstadjungierten Eigenwertaufgaben bei gewöhnlichen linearen Differentialgleichungen I, Math. Z.45 (1939), 759–787.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    Kratz W.,A substitute of l'Hospital's rule for matrices, Proc. Amer. Math. Soc.99 (1987), 395–402.MathSciNetMATHGoogle Scholar
  12. [12]
    Kratz W.,A limit theorem for matrix-solutions of Hamiltonian systems, Rend. Circ. Mat. Palermo (2)36 (1987), 457–473.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    Kratz W., Peyerimhoff A.,Sturm-Liouville eigenvalue problems and Hilbert's invariant integral, Indian J. Math. 25 No.2 (1983), 201–222.MathSciNetMATHGoogle Scholar
  14. [14]
    Kratz W., Peyerimhoff A.,An elementary treatment of Sturmian eigenvalue problems, Analysis4 (1984), 73–85.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    Kratz W., Peyerimhoff A.,A treatment of Sturm-Liouville eigenvalue problems via Picone's identity, Analysis5 (1985), 97–152.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    Kreith K.,Oscillation Theory, Springer, Lecture Notes 1970.Google Scholar
  17. [17]
    Lee E.B., Markus L.,Foundations of optimal control theory, Wiley 1967.Google Scholar
  18. [18]
    Leighton W., Nehari Z.,On the oscillation of solutions of self-adjoint linear differential equations of fourth order, Trans. Amer. Math. Soc.89 (1958), 325–377.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    Marcus M., Minc H.,A survey of matrix theory and matrix inequalities, Allyn and Bacon 1964.Google Scholar
  20. [20]
    Morse M., Leighton W.,Singular quadratic functionals, Trans Amer. Math. Soc.40 (1936), 252–286.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    Morse M.,The calculus of variations in the large, AMS Colloquium Publication18 (1934).Google Scholar
  22. [22]
    Morse M.,Variational analysis: Critical extremals and Sturmian extensions, Wiley 1973.Google Scholar
  23. [23]
    Neumark M.A.,Lineare Differentialoperatoren, Akademie Verlag 1967.Google Scholar
  24. [24]
    Picone M.,Sulle autosoluzioni e sulle formule di maggiorazione per gli integrali delle equazioni differenziali lineari ordinarie autoaggiunte, Math. Z.28 (1928), 519–555.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    Reid W.T.,Ordinary differential equations, Wiley 1971.Google Scholar
  26. [26]
    Reid W.T.,Riccati differential equations, Academic Press 1972.Google Scholar
  27. [27]
    Reid W.T.,Sturmian theory of ordinary differential equations, Springer, Lecture Notes 1980.Google Scholar
  28. [28]
    Sagan H.,Calculus of variations, Mc Graw-Hill 1969.Google Scholar
  29. [29]
    Swanson C.A.,Comparison and oscillation theory of linear differential equations, Academic Press 1968.Google Scholar
  30. [30]
    Swanson C.A.,Picone's identity, Rend. Math. (6)8 (1975), 373–397.MathSciNetMATHGoogle Scholar
  31. [31]
    Tomastik E.C.,Singular quadratic functionals of n dependent variables, Trans. Amer. Math. Soc.124 (1966), 60–76.MathSciNetMATHGoogle Scholar

Copyright information

© Springer 1989

Authors and Affiliations

  • G. Baur
    • 1
  • W. Kratz
    • 1
  1. 1.Abteilungen MathematikUniversität UlmUlmGermany

Personalised recommendations