Rendiconti del Circolo Matematico di Palermo

, Volume 31, Issue 1, pp 41–67 | Cite as

Feedback stabilization for distributed parameter systems of parabolic type, III

  • Takao Nambu


The stabilization problem for unstable distributed parameter systems of parabolic type is studied by means of feedback controls; interior and boundary, outputs and boundary inputs. The existence and the uniqueness of genuine solutions of the control system are proven. Exponential stabilizability for the control system is obtained under suitable conditions on the sensors and the controllers. A related problem is also discussed.


Exponential Stabilizability Parabolic Type Homogeneous Boundary Condition Feedback Control System Distribute Parameter System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Benchimol C. D.,A note on weak stabilizability of contraction semigroups, SIAM J. Control and Optimization,16 (1978), 373–379.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Feintuch A., Rosenfeld M.,On pole assignment for a class of infinite dimensional linear systems. SIAM J. Control and Optimization,16 (1978), 270–276.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Fujii N.,A private communication.Google Scholar
  4. [4]
    Fujii N.,Feedback stabilization of distributed parameter systems by a functional observer, SIAM J. Control and Optimization,18 (1980), 108–120.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Gressang R. V., Lamont G. B.,Observer for systems characterized by semigroups. IEEE Trans. Automatic Control AC-20, (1975), 523–528.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Ito S.,Fundamental solutions of parabolic differential equations and boundary value problems. Japan J. Math.,27 (1957), 55–102.Google Scholar
  7. [7]
    Ito S.,Partial Differential Equations, Tokyo: Baifukan 1966. (In Japanese).Google Scholar
  8. [8]
    Kato T.,Perturbation Theory for Linear Operators, New York: Springer-Verlag 1976.MATHGoogle Scholar
  9. [9]
    Krein S. G.,Linear Differential Equations in Banach Space, Providence: American Mathematical Society 1971.Google Scholar
  10. [10]
    Levan N.,The stabilizability problem: A Hilbert space operator decomposition approach. IEEE Trans. Circuits and Systems CAS-25, (1978), 721–727.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Levan N., Rigby L.,Strong stabilizability of linear contractive control systems on Hilbert space. SIAM J. Control and Optimization,17 (1979), 23–35.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Lions J. L., Magenes E.,Nonhomogeneous Boundary Value Problems and Applications, I, New York: Springer-Verlag 1971.Google Scholar
  13. [13]
    Nambu T., Sakawa Y.,Asymptotic behavior of solutions of a class of nonlinear differential equations in Banach space, Osaka J. Math.,14 (1977), 333–354.MATHMathSciNetGoogle Scholar
  14. [14]
    Nambu T.,Remarks on approximate boundary controllability for distributed parameter systems of parabolic type: Supremum norm problem. J. Math. Anal. Appl.,69 (1979), 194–204.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Nambu T.,Feedback stabilization for distributed parameter systems of parabolic type. J. Differential Equations,33 (1979), 167–188.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Nambu, T., ……, II, Arch. Rational Mech. Anal., in press.Google Scholar
  17. [17]
    Quinn J. P., Russell D. L.,Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping. Proc. Royal Soc. Edinburgh, Section A 77, (1977), 97–127.MathSciNetGoogle Scholar
  18. [18]
    Sakawa Y.,Controllability for partial differential equations of parabolic type. SIAM J. Control,12 (1974), 389–400.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Sakawa Y., Matsushita T.,Feedback stabilization of a class of distributed systems and construction of a state estimator. IEEE Trans. Automatic Control AC-20, (1975), 748–753.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    Slemrod M.,Stabilization of boundary control systems. J. Differential Equations,22 (1976), 402–415.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    Triggiani R.,On the stabilizability problem in Banach space. J. Math. Anal. Appl.,52 (1975), 383–403.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    Wonham W.M.,On pole assignment in multi-input controllable linear systems. IEEE Trans. Automatic Control AC-12, (1967), 660–665.CrossRefGoogle Scholar

Copyright information

© Springer 1982

Authors and Affiliations

  • Takao Nambu
    • 1
  1. 1.Department of System ScienceUniversity of CaliforniaLos AngelesUSA

Personalised recommendations