Advertisement

Rendiconti del Circolo Matematico di Palermo

, Volume 25, Issue 3, pp 213–233 | Cite as

Piani di André generalizzati

  • Andrea Caggegi
Article

Riassunto

Si dà una caratterizzazione dei quasicorpi di André generalizzati e si determina il nucleo di ciascuno di essi; inoltre, si fornisce un esempio di piano di André generalizzato infinito che non è piano di André.

Summary

Generalized André’s systems (generalized André’sV−W systems) are characterized and their kernels are determinated; moreover, an infinite generalized André’s plane which is not André’s plane is constructed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. [1]
    J. André,Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe, Math. Z., 60 (1954), 156–186.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    J. André,Über verallgemeinerte Moulton-Ebenen, Arch. Math. (Basel), 13 (1962), 290–301.MATHGoogle Scholar
  3. [3]
    E. Artin,Algebra geometrica, Feltrinelli, Milano (1968).Google Scholar
  4. [4]
    A. Caggegi,A-quasicorpi e A-piani, Ricerche Mat., 24 (1975), 1–18.MathSciNetGoogle Scholar
  5. [5]
    D. A. Foulser,A Generalization of André’s Systems, Math. Z., 100 (1967), 380–395.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    N. Jacobson,Lectures in Abstract Algebra, vol. III (Theory of fields and Galois theory), D. Van Nostrand Company (1964).Google Scholar
  7. [7]
    N. Jacobson,Structure of Rings, Amer. Math. Soc. Colloquium Publications, vol. XXXVII, Revised Edition (1964).Google Scholar
  8. [8]
    T. G. Ostrom,A Characterization of Generalized André Planes, Math. Z., 110 (1969), 1–9.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    G. Pickert,Projective Ebenen, Springer, Berlin-Gottingen-Heidelberg (1955).Google Scholar
  10. [10]
    F. W. Wilke e J. L. Zemmer,Some new finite translation planes, Trans. Amer. Math. Soc., 131 (1968), 378–397.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 1976

Authors and Affiliations

  • Andrea Caggegi
    • 1
  1. 1.Napoli

Personalised recommendations