Rendiconti del Circolo Matematico di Palermo

, Volume 18, Issue 3, pp 281–287 | Cite as

The geometry of metric semilattices

  • D. J. Rodabaugh


Abelian Group Partial Order Convex Subset Triangle Inequality Additive Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Garrett Birkhoff,Lattice Theory, Amer. Math. Soc. Colloquium Publications, 25 (New York, 1940).Google Scholar
  2. [2]
    L. M. Blumenthal,Theory and Applications of Distance Geometry, (Oxford University Press, 1953).Google Scholar
  3. [3]
    L. M. Blumenthal and D. O. Ellis,Notes on Lattices, Duke Math. Journal, 16 (1949), 585–590.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    V. Glivenko,Géométrie des systèmes de choses normées, Amer. J. of Math., 58 (1936), 799–828.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    V. Glivenko,Contributions à l'etude des systèmes de choses normées, Amer. J. of Math., 59 (1937), 941–956.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    L. M. Kelly,The Geometry of Normal Lattices, Duke Math. Journal, 19 (1952), 661–670.MATHCrossRefGoogle Scholar
  7. [7]
    Everett Pitcher and M. F. Smiley,Transitivities of betweenness, Trans. Amer. Math. Soc., 52 (1942), 95–114.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    D. J. Rodabaugh,Metric Semilattices, Rend. Circ. Mat. Palermo, Ser. II, 16 (1967), 273–298.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    M. F. Smiley and W. R. Transue,Applications of transitivities of betweenness in lattice theory, Bull. Amer. Math. Soc., 49 (1943), 280–287.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 1969

Authors and Affiliations

  • D. J. Rodabaugh
    • 1
  1. 1.ColumbiaU. S. A.

Personalised recommendations