Advertisement

Mesures définies sur les espaces des feuilles d’un feuilletage

  • Enrique Vidal
Article
  • 15 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chern S. S.,On integral geometry in Klein spaces, Ann. of Math. V. 43 (1942), 178–189.CrossRefMathSciNetGoogle Scholar
  2. [2]
    Chevalley O.,Lie groups, Princeton, Princeton University Press 1946.MATHGoogle Scholar
  3. [3]
    Echarte F. J.,Medidas en espacios foliados y en espacios homogéneos, Aplicación a la Geometria integral. (En prensa).Google Scholar
  4. [4]
    Hermann R.,On the differential geometry of foliations, Ann. of Math. 72, (1960) 445–457.CrossRefMathSciNetGoogle Scholar
  5. [5]
    Hermann R.,Remarks on the foundations of integral geometry, Rendic. del Circ. Matematico di Palermo, Serie II, Tomo IX (1960), 91–96.CrossRefGoogle Scholar
  6. [6]
    Hermann R.,The differential geometry of foliations II, J. of Math. and Mech. V. 11 (1962) 303–315.MATHMathSciNetGoogle Scholar
  7. [7]
    Lichnerowicz,Les relations intégrales d’invariance et leurs applications à la dynamique, Bulletin des Sc. Math. 2a S., t. LXX (1946).Google Scholar
  8. [8]
    Mostow G. D.,Homogeneous spaces with flnite invariant measure, Ann. of Math. V. 75, (1962), 17–37.CrossRefMathSciNetGoogle Scholar
  9. [9]
    Reeb G.,Sur certaines propriétés topologiques des variétés feuilletées, Act. Scient. et Ind., 1183, Paris (1952).Google Scholar
  10. [10]
    Reinhart Bruce L.,Foliated manifolds with bundle-like metric, Ann. of Math. (2) 69 (1959), 119–132.CrossRefMathSciNetGoogle Scholar
  11. [11]
    Reinhart Bruce L.,Closed metric foliations, Michigan Math. J. 8 (1961) 7–9.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Sahcksteder,Some properties of foliations, Annales de I’Inst. Fourier, T. IV (1964) 31–35.Google Scholar
  13. [13]
    Santaló L. A.,Introduction to Integral Geometry, Paris, 1952.Google Scholar
  14. [14]
    Satake I.,On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956) 356–363.MathSciNetGoogle Scholar
  15. [15]
    Serre J. P.,Lie algebras and Lie groups, W. A. Benjamin, Inc. N. Y., Amsterdam, 1965.MATHGoogle Scholar

Copyright information

© Springer 1966

Authors and Affiliations

  • Enrique Vidal
    • 1
  1. 1.Santiago de CompostelaSpagna

Personalised recommendations