Solutions of infinite polynomial systems by iteration

  • Bernard Marcus


Positive Integer Real Number Complex Number Iterative Procedure Error Bound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Courant, R. and Hilbert, D.,Methods of mathematical Physics, vol. 1, Interscience Publishers, Inc., New York, 1953.Google Scholar
  2. [2]
    Kantorovich, L. V. and Krylov, V. I.,Approximate methods of higher analysis, Interscience Publishers, Inc., New York, 1958.MATHGoogle Scholar
  3. [3]
    Kolmorgorov, A. N. and Fomin, S. V.,Elements of the theory of functions and functional analysis, Vol. 1,Metric and normed spaces, Graylock Press, Rochester, New York, 1957.Google Scholar
  4. [4]
    Lehmer, D. H.,A machine method for solving polynomial equations, J. Assoc. Comp. Mach., 8 (1961), 151–162.MATHGoogle Scholar
  5. [5]
    Munroe, W. D.,Some iterative methods for determining zeros of functions of a complex variable, Pacific Journal of Mathematics 9 (1959), 555–566.MathSciNetGoogle Scholar
  6. [6]
    Olver, F. W. J.,The evaluation of zeros of high degree polynomials, Philos. Trans. Roy. Soc., London, Ser. A. 244 (1952) 385–415.CrossRefMathSciNetGoogle Scholar
  7. [7]
    Rutishauser, H.Der Quotienten-Differensen-Algorithmus, Mitt. Inst. Angew. Math., Zurich, no. 7 (1957).Google Scholar

Copyright information

© Springer 1962

Authors and Affiliations

  • Bernard Marcus
    • 1
  1. 1.TucsonU. S. A.

Personalised recommendations