American Potato Journal

, Volume 71, Issue 7, pp 433–453 | Cite as

Nitrogen and potassium fertilization of potatoes: Sugars and starch

  • D. T. Westermann
  • D. W. James
  • T. A. Tindall
  • R. L. Hurst


Considerable evidence exists that both N and K influence potato (Solanum tuberosum L.) yields and quality. The impact of nutrients on tuber quality parameters under field conditions should be identified so optimum management practices can be utilized. We evaluated the N and K fertilization by K-sources effects on concentrations of nutrients, reducing sugars, sucrose and starch in the stem and apical tuber ends from two irrigated field experiments with the Russet Burbank cultivar. Nitrogen rates of 0,112, 224 or 336 kg ha−1 were combined with selected K rates of 0, 112, 224 or 448 kg ha−1 as either KCl or K2SO4 arranged as an incomplete factorial. A multiple linear regression model was fit to the data and used to predict the response surface for a complete factorial for each K-source. Nitrogen applications increased or decreased reducing sugars in the apical and stem ends, respectively. Potassium decreased reducing sugars in both tuber ends. Sucrose was higher in the apical end than in the stem end but was not appreciably affected by fertilizer treatment. Nitrogen and potassium applications reduced dry matter and starch concentrations in both tuber ends. Potassium had a smaller effect on the apical end when starch was expressed on a dry weight basis, indicating that increased water content was a factor in the K effect. Both N and K concentrations in the tuber ends were negatively related to starch concentrations, but the relationship was different for the apical and stem ends. Tuber Cl concentration indirectly affected starch concentrations in the stem end when KCL was applied. The K fertilization effect on specific gravity depended upon the K concentration in the harvested tuber and was independent of K fertilizer source. These data illustrate the effects of preplant N and K fertilization rates on final tuber quality parameters. Additional studies are needed to further define the effects of nutrient concentrations at different plant growth stages.

Additional Keywords

Apical end stem end sucrose reducing sugars chloride tuber dry matter sulfur nutrients potassium source 


Existe considerable evidencia que tanto el N como el K influencian los rendimientos y calidad de la papa (Solanum tuberosum L.). El impacto de los nutrientes sobre los parámetros de calidad de la papa, bajo condiciones de campo, debe ser identificado de modo que pueden utilizarse prácticas óptimas de manejo. Se evaluó la fertilización con N y K por los efectos de las fuentes de K sobre la concentración de nutrientes, los azúcares reductores, sucrosa y almidón en los extremos apical y terminal de tubérculos de dos experimentos de campo bajo irrigación, con el cultivar Russet Burbank. Se combinaron dosis de 0,112, 224, o 336 kg ha−1 de N, con dosis seleccionadas de Kde 0,112,224 o 448 kg ha−1, sea como KC1 o como K2SO4, dispuestas como un factorial incompleto. Se dispuso la información convenientemente en un modelo de regresión linear múltiple y se le utilizó para pronosticar la superficie de respuesta para un factorial completo para cada fuente de K. Las aplicaciones de N incrementaron o disminuyeron los azúcares reductores en los extremos apical y terminal, respectivamente. El K redujo los azúcares reductores en ambos extremos del tubérculo. La sucrosa fue más alta en el extremo apical que en el terminal, pero no fue apreciablemente afectada por el tratamiento con fertilizantes. Las aplicaciones de N y K redujeron las concentraciones de materia seca y almidón en ambos extremos del tubérculo. El K tuvo un efecto menor sobre el extremo apical cuando se expresó el almidón en base al peso seco, indicando que el incremento de contenido de agua era un factor en el efecto del K. Tanto las concentraciones del N como las del K, en los extremos del tubérculo, estuvieron relacionadas negativamente a las concentraciones de almidón, pero la relación fue diferente para los extremos apical y terminal. Cuando se aplicó KCl las concentraciones de Cl en el tubérculo afectaron indirectamente las concentraciones de almidón en el extremo terminal. El efecto de la fertilización con K sobre la gravedad específica dependió de la concentración de K en el tubérculo cosechado y fue independiente de la fuente de fertilizante potásico. Estos datos ilustran los efectos de las dosis de fertilización con N y K, aplicadas previamente al sembrío, sobre los parámetros de calidad final de los tubérculos. Se requieren estudios adicionales para définir aún más los efectos de las concentraciones de nutrients a diferentes estados de crecimiento de las plantas.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Anon. 1982. Dextrose and/or sucrose measurement in potatoes. Application note #102. 2p. Scientific Division, Yellow Springs Instrument Co., Inc., Yellow Springs, Ohio 45387.Google Scholar
  2. 2.
    Anon. 1983. United States Standards for grades of potatoes for processing. 48 FR 10801. Revised, effective April 14, 1983.Google Scholar
  3. 3.
    Anon. 1984. Starch analysis: specification sheet. 2p. Scientific Division, Yellow Springs Instrument Co., Inc., Yellow Springs, Ohio 45387.Google Scholar
  4. 4.
    Beringer, H., H.E. Haeder and M. Lindhauer. 1983. Water relationships and incorpora tion of14C assimilates in tubers of potato plants differing in potassium nutrition. Plant Physiol 73:956–960.PubMedGoogle Scholar
  5. 5.
    Beringer, H., K. Koch and M.G. Lindhauer. 1990. Source:sink relationships in potato (Solanum tuberosum) as influenced by potassium chloride or potassium sulphate nutri tion. Plant Soil 124:287–290.CrossRefGoogle Scholar
  6. 6.
    Beukema, H.P. and D.E. van der Zaag. 1990. Introduction to potato production. 208 p. Pudoc Wageningen, Netherlands.Google Scholar
  7. 7.
    Budke, C.C. 1984. Determination of total available glucose in corn base materials. J Agric Food Chem 32:34–37.CrossRefGoogle Scholar
  8. 8.
    Chapman, K.S.R., L.A. Sparrow, P.R. Hardman, D.N. Wright and J.R.A. Thorp. 1992. Po tassium nutrition of Kennebec and Russet Burbank potatoes in Tasmania: Effect of soil and fertilizer potassium on yield, petiole and tuber potassium concentrations, and tuber quality. Aust J Expt Agric 32:521–527.CrossRefGoogle Scholar
  9. 9.
    Flowers, T.J. 1988. Chloride as a nutrient and as an osmoticum. Adv Plant Nutrition 3:55–78.Google Scholar
  10. 10.
    Forster, H. and H. Beringer. 1983. Starch content of potato tubers in relation to K nutri tion and tuber growth. Z Pflanzenernaehr Bodenk 146:572–582.CrossRefGoogle Scholar
  11. 11.
    Haeder, H.E. 1976. The influence of chloride nutrition in comparison with sulphate nu trition on assimilation and translocation of assimilates in potato plants. Landw Forsch 32:122–131.Google Scholar
  12. 12.
    Haeder, H.E., K. Mengel and H. Forster. 1973. The effect of potassium on translocation of photosynthates and yield pattern of potato plants. J Sci Fd Agric 24:1479–1487.CrossRefGoogle Scholar
  13. 13.
    Harrap, F.E.G. 1960. Some aspects of the potash nutrition of the potato. J Sci Fd Agric 11:295–298.Google Scholar
  14. 14.
    Herlihy, M. and P.J. Carroll. 1969. Effects of N, P, and K and their interactions on yield, tuber blight and quality of potatoes. J Sci Fd Agric 20:513–517.CrossRefGoogle Scholar
  15. 15.
    Iritani, W.M. and L. Weiler. 1978. Influence of low fertility and vine killing on sugar devel opment in apical and stem portions of Russet Burbank potatoes. Am Potato J 55:239–246.Google Scholar
  16. 16.
    James, D.W., R.L. Hurst, D.T. Westermann and T.A. Tindall. 1994. Nitrogen and potassium fertilization of potatoes: Evaluating nutrient element interactions in petioles with response surfaces. (Accepted by Am Potato J, Nov. 1993).Google Scholar
  17. 17.
    Johnson, F.B., I. Hoffman and A. Petrasovits. 1968. Distribution of mineral constituents and dry matter in the potato tuber. Am Potato J 45:287–292.Google Scholar
  18. 18.
    Kunkel, R. and N. Holstad. 1972. Potato chip color, specific gravity and fertilization of potatoes with N-P-K. Am Potato J 49:43–62.Google Scholar
  19. 19.
    Lindhauer, M.G. and M.A.R. De Fekete. 1990. Starch synthesis in potato (Solanum tuberosum tubers: Activity of selected enzymes in dependence of potassium content in storage tissue. Plant Soil 124:291–295.CrossRefGoogle Scholar
  20. 20.
    Mazza, G. 1983. A comparison of methods of analysis for sugars in potato tubers. Can Inst Fd Sci Tech J 16:234–236.Google Scholar
  21. 21.
    McDole, R.E. and G.M. McMaster. 1978. Effects of moisture stress and nitrogen fertiliza tion on tuber nitrate-nitrogen content. Am Potato J 55:611–619.Google Scholar
  22. 22.
    Mica, B. 1988. Relations between the content of starch and the content of potassium in potato tubers. Starch/Starke 40:288–290.CrossRefGoogle Scholar
  23. 23.
    Neter, J., W. Wasserman and M.H. Kutner. 1989. Applied linear regression models. Rich ard D. Irwin, Inc., Homewood, Ill, 60430. 667 p.Google Scholar
  24. 24.
    Nitsos, R.E. and H.J. Evans. 1969. Effects of univalent cations on the activity of particulate starch synthetase. Plant Physiol 44:1260–1266.PubMedCrossRefGoogle Scholar
  25. 25.
    Reeve, R.M., E. Hautala and M.L. Weaver. 1970. Anatomy and compositional variations within potatoes. III. Gross compositional gradients. Am Potato J 47:148–162.Google Scholar
  26. 26.
    Roberts, S. and R.E. McDole. 1985. Potassium nutrition of potatoes. p. 799–818.In: R.D. Munson (ed.). Potassium in Agriculture. Proc Int Sym PPI, ASA, CSSA, SSSA, July 7–10, 1985. Madison, WI.Google Scholar
  27. 27.
    Schippers, P.A. 1968. The influence of rates of nitrogen and potassium application on the yield and specific gravity of four potato varieties. Eur Potato J 11:23–33.CrossRefGoogle Scholar
  28. 28.
    Schippers, P.A. 1976. The relationship between specific gravity and percentage dry mat ter in potato tubers. Am Potato J 53:111–123.Google Scholar
  29. 29.
    Sharma, U.C. and B.R. Arora. 1988. Effect of applied nutrients on the starch, proteins and sugars in potatoes. Food Chem 30:313–317.CrossRefGoogle Scholar
  30. 30.
    Shekhar, V.C. and W.M. Iritani. 1978. Starch to sugar interconversion inSolanum Tuberosum L. I. Influence of inorganic ions. Am Potato J 55:345–350.Google Scholar
  31. 31.
    Terman, G.L., P.N. Carpenter and C.E. Cunningham. 1953. Relation of soil and fertilizer to dry matter content and yield of potatoes. Soil Sci 75:449–458.CrossRefGoogle Scholar
  32. 32.
    Westermann, D.T., T.A. Tindall, D.W. James and R.L. Hurst. 1994. Nitrogen and potas sium fertilization of potatoes: Yield and specific gravity. Am Potato J 71:417–431.Google Scholar

Copyright information

© Springer 1994

Authors and Affiliations

  • D. T. Westermann
    • 1
  • D. W. James
    • 2
  • T. A. Tindall
    • 3
  • R. L. Hurst
    • 2
  1. 1.USDA-ARSKimberly
  2. 2.Utah State Univ.Logan
  3. 3.Univ. of IdahoTwin Falls

Personalised recommendations