American Potato Journal

, Volume 71, Issue 5, pp 285–296 | Cite as

Field performance of transgenic Russet Burbank and Lemhi Russet potatoes

  • William R. Belknap
  • Dennis Corsini
  • Joseph J. Pavek
  • Gordon W. Snyder
  • David R. Rockhold
  • Michael E. Vayda


Transformed Russet Burbank and Lemhi Russet clones which contained three different transgene constructs were evaluated for performance under field conditions in Idaho. The transgenic lines were characterized over two growing seasons, using plants grown from both greenhouse produced minitubers (first year) and field grown seed (second year). Individual clones were evaluated for a variety of agronomic and quality properties. Many of the transformed clones showed reduced yield and increases in percent malformed and undersized tubers. Other characteristics, such as specific gravity and fry color, showed less variability. The variation observed in non-transgenic clones regenerated from tissue culture was less than that of the transformed lines. Out of an original population of 57 transgenic lines in tissue culture, maintenance of key agronomic and quality properties of the parental material was observed in only four clones. These results suggest that experiments designed to generate transgenic lines for the marketplace should be initiated with a large number of transgenic clones.

Additional Key Words

Tuber quality yield Agrobacterium tumefaciens cecropin β-glucuronidase 


Clones transformados de Russet Burbank y Lemhi Russet, que contenían tres diferentes prototipos de transgenes fueron evaluados para comportamiento bajo condiciones de campo en Idaho. Las líneas transgénicas se caracterizaron en dos temporadas de cultivo, utilizando plantas obtenidas tanto de minituberculos producidos en invernadero (primer año) como semilla producida en el campo (segundo año). Se evaluaron clones individuales para diversas propiedades agronomicas y de calidad. Muchos de los clones transformados mostraron rendimientos reducidos y un incremento en el porcentaje de tubérculos deformesy de pequeño tamaño. Otras características, tales como la gravedad específica y el color a la fritura, mostraron una menor variabilidad. La variacíon observada en los clones no transgénicos regenerados de cultivo de tejidos fue menor que aquella de las líneas transformadas. De una población original de 57 líneas transgénicas en cultivo de tejidos, se observó que sólo cuatro de ellas mantenían las principales propiedades agronómicas y de calidad del material progenitor. Estos resultados sugieren que los experimentos diseñados para generar líneas transgenicas para el mercado deberán iniciarse con un gran número de clones transgenicos.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    An, G., B.D. Watson, S. Satchel, M.P. Gordon and E.W. Nester. 1985. New cloning vehicles for transformation of higher plants. EMBO J 4:277–284.PubMedGoogle Scholar
  2. 2.
    Bevan, M., R. Barker, A. Goldsbrough, M. Jarvis, T. Kavanagh and G. Iturriaga. 1986. The structure and transcription start site of a major tuber protein gene. Nucl Acids Res 14:4625–4638.PubMedCrossRefGoogle Scholar
  3. 3.
    Bevan, M., W.M. Barnes and M.D. Chilton. 1983. Structure and transcription of the nopaline synthase gene region of T-DNA. Nucl Acids Res 11: 369–385.PubMedCrossRefGoogle Scholar
  4. 4.
    Bourque, J.E., J.C. Miller and W.D. Park. 1987. Use of anin vitro tuberization system to study tuber protein gene expression. Cell Dev Biol 23: 381–386.CrossRefGoogle Scholar
  5. 5.
    Dale, P.J. and H.C. MacPartlan. 1992. Field performance of transgenic potato plants compared with controls regenerated from tuber discs and shoot cuttings. Theor Appl Genet 84:585–591.CrossRefGoogle Scholar
  6. 6.
    Destefano-Beltran, L., P.G. Nagpala, S.M. Cetiner, J.H. Dodds and J.M. Jaynes. 1990. Enhancing bacterial and fungal disease resistance in plants: application to potato.In: M.E. Vayda and W.D. Park (Eds). Molecular Biology of the Potato, Chapter 15, C.A.B. Internat Publ UK. pp. 89–95.Google Scholar
  7. 7.
    Dorel, C., T.A. Voelker, E.M. Herman and M.J. Chrispeels. 1989. Transport of proteins to the plant vacuole is not by bulk flow through the secretory system, and requires positive sorting information. J Cell Biol 108: 327–337.PubMedCrossRefGoogle Scholar
  8. 8.
    Draper, J. and R. Scott. 1988. The isolation of plant nucleic acids.In: J. Draper, R. Scott, P. Armitage, and R. Waiden (Eds). Plant Genetic Transformation and Gene Expression: A Laboratory Manual. Blackstone Scientific Publications, Oxford. pp. 199–236.Google Scholar
  9. 9.
    Draper, J., R. Scott, and J. Hamil. 1988 Transformation of dicotyledonous plant cells using the Ti Plasmid ofAgrobacterium tumefaciens and the Ri plasmid of A.rhizogenes.In: Draper, R. Scott, P. Armitage and R. Waiden (Eds). Plant Genetic Transformation and Gene Expression: A Laboratory Manual. J. Blackstone Scientific Publications, Oxford. pp. 161–198.Google Scholar
  10. 10.
    Feldman, K.A. 1991. T-DNA insertion mutagenesis inAmbidopsis mutational spectrum. Plant J 1:71–82.CrossRefGoogle Scholar
  11. 11.
    Hoekema, A., P.R. Hirsch, P.J.J. Hooykaas and R.A. Schilperoort. 1983. A binary plant vector strategy based on separation of the vir- and T-region ofAgrobacterium tumefaciens Ti plasmid. Nature 303:179–180.CrossRefGoogle Scholar
  12. 12.
    Jefferson, R.A., T.A. Kavanagh and M.W. Bevan. 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907.PubMedGoogle Scholar
  13. 13.
    Karp, A., M.J.K. Jones, D. Foulger, N. Fish and S.W.J. Bright. 1989. Variability in potato tissue culture. Am Potato J 66: 669–684.Google Scholar
  14. 14.
    Lawson, C., W. Kaniewski, L. Haley, R. Rozman, C. Newell, P. Sanders and N.E. Turner. 1990. Engineering resistance to mixed virus infection in a commercial potato cultivar: resistance to potato virus X and potato virus Yin transgenic Russet Burbank. Bio/Technol 8:127–134.CrossRefGoogle Scholar
  15. 15.
    McBride, K.E. and K. Summerfelt. 1990. Improved binary vectors forAgrobacterium-mediated plant transformation. Plant Mol Biol 14:269–276.PubMedCrossRefGoogle Scholar
  16. 16.
    Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15: 473–497.CrossRefGoogle Scholar
  17. 17.
    Odell, J.T., F. Nagy F and N. H. Chua. 1987. Variability in 35S promoter expression between independent transformants.In: JL Key and L McIntosh (Eds). Plant Gene Systems and Their Biology. Alan R. Liss, New York, NY, pp 321–330.Google Scholar
  18. 18.
    Ottaviani, M-P., T. Smits and C.H. Hanisch ten Cate. 1993. Differential methylation and expression of the β-glucuronidase and neomycin phosphotransferase genes in transgenic plants of potato cv, Bintje. Plant Sci 88: 73–81CrossRefGoogle Scholar
  19. 19.
    Pavek, J.J., D.L. Corsini, J.G. Gamer, S. Michener, W.C. Sparks, G.F.Cranahan, C.E. Stanger, A.R. Mosley, M.J. Johnson, G.E. Carter, R.E. Voss, M.W. Martin and R.H. Johansen. 1981. Lemhi Russet: a new high yielding potato variety with wide adaptation, attractive tubers, and high internal quality. Am Potato J 58: 619–625.Google Scholar
  20. 20.
    Ray, A., N.A. Memmel, R.P. Orchekowski and K.A. Kumaran. 1987. Isolation of two cDNA clones coding for larval hemolymph proteins ofGalleria mellonella. Insect Biochem 17:603–617.CrossRefGoogle Scholar
  21. 21.
    Rickey, T.M. and W.R. Belknap. 1991. Comparison of the expression of severals tress-responsive genes in potato tubers. Plant Mol Biol 16: 1009–1018.PubMedCrossRefGoogle Scholar
  22. 22.
    Sambrook, J., E.F. Fritsch, T. Maniatis: Molecular Cloning: A Laboratory Manual (2nd ed). 1989. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  23. 23.
    Rietveld, R.C., P.M. Hasegawa and R.A. Bressan. 1991. Somaclonal variation in tuber discderived populations of potato. I. Evidence of genetic stability across tuber generations and diverse locations. Theor Appl Genet 82: 430–440.CrossRefGoogle Scholar
  24. 24.
    Secor, G.A. and J.F. Shephard. 1981. Variability of protoplast derived potato clones. Crop Sci 21: 102–105.CrossRefGoogle Scholar
  25. 25.
    Snyder, G.W. and W.R. Belknap. 1993. An improved method for Agrobacterium-mediated transformation ofin vitro-grown potato microtubers. Plant Cell Reports. In Press.Google Scholar
  26. 26.
    Tefler, W.H., S.P. Keim and J.H. Law. 1983. Arylphorin, a new protein fromHyalophora cecropia. comparisons with calliphorin and manducin. Insect Biochem 13: 601–613.CrossRefGoogle Scholar
  27. 27.
    Vayda, M.E. and W.R. Belknap. 1992. The Emergence of transgenic potatoes as commercial products and tools for basic science. Transgenic Research 1: 149–163.CrossRefGoogle Scholar
  28. 28.
    Verwoerd, T.C., B.M.M. Dekker and A. Hoekema. 1989. A small-scale procedure for the rapid isolation of plant RNAs. Nucl Acids Res 17: 2362.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 1994

Authors and Affiliations

  • William R. Belknap
    • 1
  • Dennis Corsini
    • 2
  • Joseph J. Pavek
    • 2
  • Gordon W. Snyder
    • 3
  • David R. Rockhold
    • 1
  • Michael E. Vayda
    • 4
  1. 1.Western Regional Research Center, Agricultural Research ServiceU.S. Department of AgricultureAlbany
  2. 2.Agricultural Research Service, U.S. Department of AgricultureUniversity of Idaho Research and Extension CenterAberdeen
  3. 3.Plant Molecular Biology LaboratoryUSDA/ARSBeltsville
  4. 4.Department of Biochemistry, Microbiology and Molecular BiologyUniversity of MaineOrono

Personalised recommendations