American Potato Journal

, Volume 70, Issue 1, pp 61–69 | Cite as

Evaluation of wild tuber-bearingSolanum accessions for foliar glycoalkaloid level and composition

  • K. L. Deahl
  • S. L. Sinden
  • R. J. Young


Six hundred forty-five accessions of 70Solanum species and six natural hybrids were screened for foliar glycoalkaloids. Total foliar glycoalkaloid (TFGA) level and glycoalkaloid composition of one or more accessions of each species were determined by TLC and GLC analyses. Of the more than 12 different glycoalkaloids found in the wild species in this survey, solanine and chaconine account for more than 60% of the TFGA found in the foliage of these plants. There was wide variation in the total glycoalkaloid levels among the species.S. neocardenasii had the highest average TFGA value of the 70 species, 222 mg/100 g fresh wt (222 mg %) and an accession ofS. chacoense had the highest TFGA value recorded in the survey, 486 mg %. Of the 70 species, only 11 had average TFGA levels of more than 100 mg %. However, one or more accessions in 27 of the species synthesized more than 100 mg %. Forty-five species synthesized an average level of less than 50 mg %. The level usually found in the foliage of commercial potato cultivars is about 50 mg %. Therefore, most of theSolanum species in the potato germplasm collection can be considered low glycoalkaloid species.

Additional Key Words

Alkaloid germplasm 


Se evaluaron y seleccionaron 645 entradas de 70 especies deSolanum y seis híbridos naturales para glicoalcaloides foliares. Se determinaron el nivel de glicoalcaloides totales (TFGA) y la compositión de una o más entradas de cada especie por medio de análisis TLC y GLC. De más de 12 glicoalcaloides diferentes encontrados en las especies silvestres en este estudio, la solanina y la chaconina representan más de 60% del TFGA encontrado en el follaje de estas plantas. Hubo una gran variatión, entre las especies, en los niveles de glicoalcaloides totales.

S. neocardenasii tuvo el valor promedio más alto de TFGA de las 70 especies, 222 mg/100 g de peso fresco (222 mg %) y una entrada de S. chacoense tuvo el valor más alto de TFGA registrado en el estudio, 486 mg %. De las 70 especies, sólo 11 tuvieron niveles promedio de TFGA de más de 100 mg %. Sin embargo, una o más entradas en 27 de las especies sintetizaron más de 100 mg % g. Cuarenta y cinco especies sintetizaron un nivel promedio menor de 50 mg %. El nivel encontrado generalmente en el follaje de cultivares comerciales de papa es más o menos de 50 mg %. Por consiguiente, la mayoría de las especies de Solanum en la colección de germoplasma de papa pueden considerarse especies de bajo contenido de glicoalcaloides.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Bamberg, J.B., R.E. Hanneman, Jr. and L.E. Towill. 1986. Use of activated charcoal to enhance the germination of botanical seeds of potato. Am Potato J 63:181–191.Google Scholar
  2. 2.
    Cronk, T.C., G.D. Kuhn and F.J. McArdle. 1974. The influence of stage of maturity, level of nitrogen fertilization and storage on the concentration of solanine in tubers of three potato cultivars. Bull Environ Contam Toxicol 11:163–168.PubMedCrossRefGoogle Scholar
  3. 3.
    Deahl, K.L., R.J. Young and S.L. Sinden. 1973. A study of the relationship of late blight resistance to glycoalkaloid content in fifteen potato clones. Am Potato J 50:248–253.Google Scholar
  4. 4.
    Deahl, K.L. and S.L. Sinden. 1987. A technique for the rapid detection of leptine glycoalkaloids in potato foliage. Am Potato J 64:285–291.Google Scholar
  5. 5.
    Deahl, K.L. and S.L. Sinden. 1987. Screening of IR-1Solanum accessions for foliar glycoalkaloid level and composition. Am Potato J 64:433 (ABSTRACT).Google Scholar
  6. 6.
    Gregory, P., S.L. Sinden, S.F. Osman, W.M. Tingey and D.A. Chessin. 1981. Glycoalkaloids of some wild potato tuber-bearingSolanum species. J Agric Food Chem 29:1213–1215.Google Scholar
  7. 7.
    Georgieva, R. and B. Ronkov. 1954. [Investigating the inheritance of the solanine type of glycoalkaloids in some interspecific hybrids of the potato (in Bulgarian, German summary; data summarized (9) by McCollum and Sinden).] Izv Int Rastenievud Akad Selskosteb Nouk Bulg12:225–250.Google Scholar
  8. 8.
    Kuc, J. 1975. Teratogenic constituents of potatoes. Rec Adv in Phytochemistry 9:139–150.Google Scholar
  9. 9.
    McCollum, G.D. and S.L. Sinden. 1972. Inheritance of tuber glycoalkaloids inSolanum chacoense. Am Potato J 95–113.Google Scholar
  10. 10.
    Sanford, L.L. and S.L. Sinden. 1972. Inheritance of potato glycoalkaloids. Am Potato J 49:209–217.Google Scholar
  11. 11.
    Sinden, S.L., R.W. Goth and M.J. O’Brien. 1973. Effect of potato glycoalkaloids on the growth ofAltemaria solani and their possible role as resistance factors in potatoes. Phytopathology 63:303–307.CrossRefGoogle Scholar
  12. 12.
    Sinden, S.L. and R.E. Webb. 1974. Effect of environment on glycoalkaloid content of six potato varieties at 39 locations. Tech Bull No 1472. Agric Res Serv US Dep Agric 31 pp.Google Scholar
  13. 13.
    Sinden, S.L., L.L. Sanford and S.F. Osman. 1980. Glycoalkaloids and resistance to the Colorado potato beetle inSolanum chacoense Bitt. Am Potato J 57:331–343.Google Scholar
  14. 14.
    Sinden, S.L. and L.L. Sanford. 1981. Origin and inheritance of solamarine glycoalkaloids in commercial potato cultivars. Am Potato J 58:305–325.Google Scholar
  15. 15.
    Sinden, S.L., L.L. Sanford and K.L. Deahl. 1986. Segregation of leptine glycoalkaloids inSolanum chacoense Bitter. J Agric Food Chem 34:372–377.CrossRefGoogle Scholar
  16. 16.
    Sinden, S.L., L.L. Sanford, W.W. Cantelo and K.L. Deahl. 1986. Leptine glycoalkaloids and resistance to the Colorado potato beetle (Coleoptera: Chrysomelidae) inSolanum chacoense. Environ Entomol 15:1057–1962.Google Scholar
  17. 17.
    Struckow, B. and I. Low. 1961. The effects of someSolanum alkaloid glycosides on the potato beetle. Entomol Exp Appl 4:133–142.CrossRefGoogle Scholar
  18. 18.
    Tingey, W.M. 1984. Glycoalkaloids as pest resistance factors. Am Potato J 61:157–167.Google Scholar
  19. 19.
    Tingey, W.M., J.D. MacKenzie and P. Gregory. 1978. Total foliar glycoalkaloids and resistance of wild potato species toEmpoasca fabae (Harris). Am Potato J 55:577–585.Google Scholar
  20. 20.
    Torka, M. 1950. Breeding potatoes with resistance to the Colorado potato beetle. Am Potato J 27:263–271.Google Scholar
  21. 21.
    VanGelder, W.M.J., J.H. Winke and J.J.C. Scheffer. 1988. Steroidal glycoalkaloids in tubers and leaves ofSolanum species used in potato breeding. Euphytica S:147-158.Google Scholar
  22. 22.
    Willimott, S.G. 1933. An investigation into solanine poisoning. Analyst 58:431–438.CrossRefGoogle Scholar
  23. 23.
    Wilson, G.S. 1959. A small outbreak of solanine poisoning. Med Res Counc GB Mon Bull 18:207–210.Google Scholar
  24. 24.
    Wilson, J.M. and J.S. Frank. 1975. The effect of systemic pesticides on the total glycoalkaloid content of potato tubers at harvest. Am Potato J 52:179–184.CrossRefGoogle Scholar

Copyright information

© Springer 1993

Authors and Affiliations

  • K. L. Deahl
    • 1
  • S. L. Sinden
    • 1
  • R. J. Young
    • 2
  1. 1.U.S. Department of Agriculture, Agricultural Research ServicePlant Sciences Institute, Vegetable LaboratoryBeltsville
  2. 2.West Virginia UniversityMorgantown

Personalised recommendations