, Volume 15, Issue 4, pp 357–369 | Cite as

SU(3) representation for the polarisation of light

  • G Ramachandran
  • M V N Murthy
  • K S Mallesh


A new mathematical representation for discussing the state of polarisation of an arbitrary beam of partially polarised light is described which makes use of the generators of the group SU(3). This representation is sufficiently general to describe not only physical photons which are transverse but also virtual photons. The correspondence between our representation and the conventional Stokes parameter representation is established and this leads to an equivalent geometrical description of partially polarised light in terms of diametrically opposite points on a Poincarè sphere with radius equal to the degree of polarisation. The connection with the spherical tensor representation is also discussed and this leads to a simple geometrical interpretation of the bounds on the parameters characterizing an arbitrary beam of partially polarised light.


Photons polarisation density matrix, Stokes parameters SU(3) representation bounds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barschall H H and Haeberli W (eds) 1970Proc. Int. Conf. on polarisation phenomena in nuclear reactions (Madison, Wisconsin: University of Wisconsin Press)Google Scholar
  2. Bjorken J D and Drell S D 1965Relativistic quantum mechanics (New York: McGraw Hill)Google Scholar
  3. Born M and Wolf E 1959Principles of optics (London: Pergamon Press)MATHGoogle Scholar
  4. Capps R H 1961Phys. Rev. 122 929CrossRefADSGoogle Scholar
  5. Dalitz R H 1966Nucl. Phys. 87 89CrossRefGoogle Scholar
  6. Dombey 1971 inHadronic interactions of electrons and photons, (eds) J Cumming and H Osborn (New York: Academic Press) p. 17Google Scholar
  7. Feynman R P 1962Quantum electrodynamics (New York: W A Benjamin)MATHGoogle Scholar
  8. Fano U 1957Rev. Mod. Phys. 29 74MATHCrossRefADSMathSciNetGoogle Scholar
  9. Gell-Mann M 1962Phys. Rev. 125 1067MATHCrossRefADSMathSciNetGoogle Scholar
  10. Gell-Mann M and Neeman Y 1964The eightfold way (New York: WA Benjamin)Google Scholar
  11. Lichtenberg D B 1978Unitary symmetry andelementary particles (New York: Academic Press) p. 124Google Scholar
  12. McMaster W H 1961Rev. Mod. Phys. 33 8CrossRefADSMathSciNetGoogle Scholar
  13. Minnaert P 1966Phys. Rev. Lett. 16 6723MathSciNetGoogle Scholar
  14. Pancharathnam S 1956aProc. Indian Acad. Sci. A44 247Google Scholar
  15. Pancharathnam S 1956bProc. Indian Acad. Sci. A44 398Google Scholar
  16. Perl M L 1974High energy hadron physics (New York: John Wiley)Google Scholar
  17. Racah G 1961Group theory and spectroscopy, CERN61-8 p. 77Google Scholar
  18. Ramachandran G and Murthy M V N 1978Nucl. Phys. A302 444ADSGoogle Scholar
  19. Ramachandran G and Murthy M V N 1979Nucl. Phys. A323 403ADSMathSciNetGoogle Scholar
  20. Ramachandran G N and Ramaseshan S 1961Crystal optics inEncyclopaedia of Physics, (ed) S Flügge (Berlin: Springer Verlag)Google Scholar
  21. Roman P 1959aNuovo Cimento 13 974MATHCrossRefMathSciNetGoogle Scholar
  22. Roman P 1959bProc. Phys. Soc. 74 649CrossRefMathSciNetGoogle Scholar
  23. Rose M E 1957Elementary theory of angular momentum (New York: John Wiley) p. 77MATHGoogle Scholar
  24. Seiler F and Roser H W 1977Phys. Lett. B69 411ADSGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1980

Authors and Affiliations

  • G Ramachandran
    • 1
  • M V N Murthy
    • 1
  • K S Mallesh
    • 1
  1. 1.Department of PhysicsUniversity of MysoreManasagangotri, MysoreIndia

Personalised recommendations