Advertisement

Pramana

, Volume 45, Issue 1, pp 41–46 | Cite as

Triple differential cross sections for ionization of hydrogen atoms by positrons in a Schwinger variational calculation

  • J N Das
  • A Dey
  • K Chakrabarti
Article

Abstract

Schwinger variational principle has been used to calculate triple differential cross-sections for ionization of hydrogen atoms by positrons at intermediate and high energies for Ehrhardt type asymmetric geometry. The results agree in general with the calculations of Brauneret al [8] and with the second Born calculation.

Keywords

Cross section collision ionization peak scattering 

PACS No.

34.80 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F W Byron, C J Joachain and B Piraux,J. Phys. B13, L673 (1980)Google Scholar
  2. [2]
    F W Byron, C J Joachain and B Piraux,Phys. Lett. A99, 427 (1983)ADSGoogle Scholar
  3. [3]
    E P Curran and H R J Walters,J. Phys. B20, 337 (1987)ADSGoogle Scholar
  4. [4]
    E P Curran, C J T Whelan and H R J Walters,J. Phys. B24, L19 (1991)Google Scholar
  5. [5]
    P Schlemmer, M K Srivastava, T Rösel and H Ehrhardt,J. Phys. B24, 2719 (1991)ADSGoogle Scholar
  6. [6]
    S Jones, D H Madison, A Franz and P L Altic,Phys. Rev. A48, R22 (1993)Google Scholar
  7. [7]
    I E McCarthy and X Zhang,Aust. J. Phys. 43, 291 (1990)ADSGoogle Scholar
  8. [8]
    M Brauner, J S Briggs and H Klar,J. Phys. B22, 2265 (1989)ADSGoogle Scholar
  9. [9]
    J N Das and S Seal,Phys. Rev. A47, 2978 (1993)ADSGoogle Scholar
  10. [10]
    J N Das and S Seal,Pramana — J. Phys. 40, 253 (1993)ADSGoogle Scholar
  11. [11]
    S Seal and J N Das,Aust. J. Phys. 47, 49 (1994)ADSGoogle Scholar
  12. [12]
    H Ehrhardt, K Jung, G Knoth and P Schlemmer,Z. Phys. D1, 3 (1986)ADSGoogle Scholar
  13. [13]
    H Ehrhardt, Private communication (1991)Google Scholar
  14. [14]
    B Lohmann, I E McCarthy, A T Stelbovics and E Weigold,Phys. Rev. A30, 758 (1984)ADSGoogle Scholar
  15. [15]
    A Schwab,Nucl. Instrum. Methods Phys. Res. B56–57, 586 (1991)Google Scholar
  16. [16]
    D Fromme, G Kruse, W Raith and G Sinapius,J. Phys. B21, L261 (1988)Google Scholar
  17. [17]
    A S Ghosh, P S Mazumdar and M Basu,Can. J. Phys. 69, 621 (1985)ADSGoogle Scholar
  18. [18]
    K K Mukherjee, N R Singh and P S Mazumder,J. Phys. B22, 99 (1989)ADSGoogle Scholar
  19. [19]
    A Oshaki, T Watanbe, K Nakanishi and K Iguchi,Phys. Rev. A32, 2640 (1985)ADSGoogle Scholar
  20. [20]
    A E Wetmore and R E Olson,Phys. Rev. A34, 2122 (1986)ADSGoogle Scholar
  21. [21]
    J N Das, A Dey and K Chakrabarti,Aust. J. Phys. 47, 751 (1994)ADSGoogle Scholar
  22. [22]
    C J Joachain,Quantum collision theory, (North Holland, New York, 1973) p. 413Google Scholar

Copyright information

© the Indian Academy of Sciences 1995

Authors and Affiliations

  • J N Das
    • 1
  • A Dey
    • 1
  • K Chakrabarti
    • 1
  1. 1.Department of Applied MathematicsUniversity College of ScienceCalcuttaIndia

Personalised recommendations