Advertisement

Pramana

, Volume 38, Issue 1, pp L91–L94 | Cite as

Transition from order to chaos in SU(2) Yang-Mills-Higgs system

  • M P Joy
  • M Sabir
Rapid Communication

Abstract

Time-dependent spherically symmetricSU(2) Yang-Mills-Higgs system is shown to be chaotic near the ’t Hooft-Polyakov monopole solution by calculating the maximal Lyapunov exponents. A phase transition like behaviour from order to chaos is observed as a parameter depending on the self interaction constant of scalar fields increases.

Keywords

Chaos Yang-Mills-Higgs system monopoles Lyapunov exponents 

PACS Nos

11·10 05·45 

References

  1. Contopouos G, Galgani L and Giorgilli A 1978Phys. Rev. A18 1183ADSGoogle Scholar
  2. Joy M P and Sabir M 1989J. Phys. A22 5153ADSMathSciNetGoogle Scholar
  3. Matinyan S G, Prokhorenko E V and Savvidy G K 1986JETP Lett. 44 138 (1986Pis’ma Zh. Eksp. Teor. Fiz. 44 109)ADSGoogle Scholar
  4. Matinyan S G, Prokhorenko E V and Savvidy G K 1988Nucl. Phys. B298 414CrossRefADSMathSciNetGoogle Scholar
  5. Matinyan S G, Prokhorenko E V and Savvidy G K 1989Sov. J. Nucl. Phys. 50 178 (1989Yad. Fiz. 50 284)Google Scholar
  6. Matinyan S G, Savvidy G K and Ter Arutyunyan-Savvidy 1981aSov. Phys. JETP 53 421 (1981Zh. Eksp. Teor. Fiz. 80 830)Google Scholar
  7. Matinyan S G, Savvidy G K and Ter Arutyunyan-Savvidy 1981bJETP Lett. 34 590 (1981Pis’ma Zh. Eksp. Teor. Fiz. 34 613)ADSGoogle Scholar
  8. Mecklenberg E S and O’Brien D P 1978Phys. Rev. D18 1327ADSGoogle Scholar
  9. Prasad M K and Sommerfeld C M 1975Phys. Rev. Lett. 35 760CrossRefADSGoogle Scholar
  10. Savvidy G K 1984Nucl. Phys. B246 302CrossRefADSMathSciNetGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1992

Authors and Affiliations

  • M P Joy
    • 1
  • M Sabir
    • 1
  1. 1.Department of PhysicsCochin University of Science and TechnologyCochinIndia

Personalised recommendations