, Volume 18, Issue 3, pp 243–248 | Cite as

A Mössbauer study of hyperfine interaction in the systems Co x Mn3−xy Fe y O4 and Ni x Mn3−xy Fe y O4

  • V K Singh
  • R Chandra
  • S Lokanathan
Solid State Physics


A Mössbauer study of systems Co x Mn3−xy Fe y O4 and Ni x Mn3−xy Fe y O4 for values ofx=0·1, 0·5, 1·0 andy ranging from 0·1 to 2·0 in steps of 0·2 have been made. At room temperature samples fory values ranging in between 0·1 to 0·5 exhibit paramagnetic behaviour while all spectra for values ofy between 0·6 to 0·8 show relaxation effects. Well-defined hyperfine Zeeman spectra are observed for all the samples withy>0·8 and resolved in two sextets corresponding to octahedral and tetrahedral site symmetries and a central doublet probably due to the presence of super-paramagnetic particles in the system. The hyperfine field at57Fe nucleus reduces with decreasing iron cobalt and nickel concentration. These observations have been explained in terms of site preference of cations and exchange interactions.


Hyperfine interaction octahedral hyperfine field tetrahedral hyperfine field quadrupole splitting isomer shift octahedral site preference energy super exchange interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennett L H and Streever R L 1962J. Appl. Phys. 33 1092CrossRefADSGoogle Scholar
  2. Booth J G and Crangle C 1962Proc. Phys. Soc. 79 1278CrossRefGoogle Scholar
  3. Chandra R and Lokanathan S 1977Phys. Status Solidi B83 273CrossRefGoogle Scholar
  4. Daniels J M and Rosencwaig A 1970Can. J. Phys. 48 1381Google Scholar
  5. Driessens F C M 1967Inorg. Chem. Acta. 1 193CrossRefGoogle Scholar
  6. Filoti G, Gelberg A, Gomella V and Rosenberg M 1972aInt. J. Magn. 2 65Google Scholar
  7. Filoti G, Gelgerg A, Rosenberg M, Spanu V and Telnic P 1972bPhys. Status Solidi B14 K91Google Scholar
  8. Geller S, Williams H J, Sheerwood R C and Epsinova G P 1962J. Phys. Chem. Solids 23 1525CrossRefADSGoogle Scholar
  9. Goldanskii V I and Makarov E F 1968Chemical application of Mössbauer spectroscopy (ed) V I Goldanskii and R H Herber (New York: Academic Press)Google Scholar
  10. Goodenough J B 1955Phys. Rev. 98 391CrossRefADSGoogle Scholar
  11. Gorter E W 1954Philips Res. Rept. 9 295Google Scholar
  12. Guilland C 1951J. Phys. Rad. 12 239CrossRefGoogle Scholar
  13. Gupta R G and Mendiratta R G 1977J. Appl. Phys. 48 2998CrossRefADSGoogle Scholar
  14. Ishikawa Y 1962J. Phys. Soc. Jpn. 17 239CrossRefGoogle Scholar
  15. Ishikawa Y 1964J. Appl. Phys. 30 1054CrossRefADSGoogle Scholar
  16. Moriya T 1964Solid State Commun. 2 239CrossRefADSGoogle Scholar
  17. Moriya T 1965Prog. Theor. Phys. Osaka Univ. 33 157MATHCrossRefADSGoogle Scholar
  18. Simkin D J, Ficalora P J and Bernheim R A 1965Phys. Lett. 19 536CrossRefADSGoogle Scholar
  19. Singh V K, Chandra R and Lokanathan S 1981Phys. Stat. Solidi B105 K13Google Scholar
  20. Sawatzky G A, Vander Woude F and Morrish A H 1969Phys. Rev. 187 747CrossRefADSGoogle Scholar
  21. Srivastava C M, Sringi S N, Srivastava R G and Nadadikar N 1976Phys. Rev. B14 2041ADSGoogle Scholar
  22. Streever R L, Bennet L H, LaFrance R C and Day C F 1963J. Appl. Phys. Suppl. 34 1050CrossRefADSGoogle Scholar
  23. von Meerwal E 1976Computer Phys. Commun. 9 117CrossRefGoogle Scholar
  24. Watson R E and Freeman A J 1961Phys. Rev. 213 2027CrossRefADSMathSciNetGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1982

Authors and Affiliations

  • V K Singh
    • 1
  • R Chandra
    • 1
  • S Lokanathan
    • 1
  1. 1.Department of PhysicsUniversity of RajasthanJaipurIndia

Personalised recommendations