Advertisement

Pramana

, Volume 44, Issue 2, pp 109–119 | Cite as

On the accuracy of wavefunctions obtained by the Fourier grid Hamiltonian method

  • P Dutta
  • S P Bhattacharyya
Article
  • 65 Downloads

Abstract

The quality of wavefunctions obtained by the Fourier grid Hamiltonian (FGH) method is analyzed. The criteria used for judging the quality are the extent to which virial, hypervirial and Hellmann-Feynman theorems are satisfied by the numerically computed FGH-wavefunction. The quality of the FGH-wavefunction is also examined from the point of view of local error in the wavefunction. It is shown that high quality wavefunctions can be obtained from the FGH recipe if the grid length (L) and grid spacings are chosen after properly examining the range of the potential and its nature.

Keywords

Fourier grid Hamiltonian (FGH) discrete variable representation accurate quantum mechanical methods for bound states accuracy of FGH wavefunction Fourier transform methods 

PACS No.

3.65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R Kosloff and H Tal-Ezer,Chem. Phys. Lett. 127, 223 (1986)CrossRefADSGoogle Scholar
  2. [2]
    R Kosloff,J. Phys. Chem. 92, 2087 (1986)CrossRefGoogle Scholar
  3. [3]
    C C Marston and G G Balint-Kurti,J. Chem. Phys. 91, 3571 (1989)CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    G G Balint-Kurti, C L Ward and C C Marston,Comput. Phys. Commun. 67, 285 (1991)MATHCrossRefADSGoogle Scholar
  5. [5]
    W Yang and A C Peet,J. Chem. Phys. 92, 522 and references cited therein (1990)Google Scholar
  6. [6]
    J C Light, I P Hamilton and J V Lill,J. Chem. Phys. 82, 223 (1986)Google Scholar
  7. [6]a
    S E Choi and J C Light,J. Chem. Phys. 90, 2593 (1984)CrossRefADSGoogle Scholar
  8. [7]
    Z Bacic, R M Whitnall, D Brown and J C Light,Comput. Phys. Commun. 51, 35 (1988)CrossRefADSGoogle Scholar
  9. [7]a
    R M Whitnell and J C Light,J. Chem. Phys. 90, 1774 (1989)CrossRefADSGoogle Scholar
  10. [8]
    D O Harris, G G Enyerholm and W D Gwinn,J. Chem. Phys. 43, 1515 (1965)CrossRefADSGoogle Scholar
  11. [9]
    A S Dickinson and P R Certain,J. Chem. Phys. 49, 4209 (1968)CrossRefADSMathSciNetGoogle Scholar
  12. [10]
    P Dutta, S Adhikary and S P Bhattacharya,Chem. Phys. Lett. 212, 677 (1993)CrossRefADSGoogle Scholar
  13. [11]
    P O Lowdin,J. Mol. Spectrosc. 3, 46 and references cited thereinGoogle Scholar
  14. [12]
    R P Feynman,Phys. Rev. 56, 340Google Scholar
  15. [12]a
    H Hellmann, inEin fuhruns in die Quantenchemie (Dennticke, Leipzig, 1937) p 285Google Scholar
  16. [13]
    S T Epstein, inThe variational methods in quantum chemistry, (Academic Press, New York, 1974) p. 92Google Scholar
  17. [14]
    J O Hirschfelder,J. Chem. Phys. 33, 1462 (1960)CrossRefADSMathSciNetGoogle Scholar
  18. [15]
    J Morales, A Palma and L Sandoval,Int. J. Quantum. Chem. 29, 211Google Scholar
  19. [16]
    A A Frost,J. Chem. Phys. 25, 1150 (1956)CrossRefADSGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1995

Authors and Affiliations

  • P Dutta
    • 1
  • S P Bhattacharyya
    • 1
  1. 1.Department of Physical ChemistryIndian Association for the Cultivation of ScienceJadavpur, CalcuttaIndia

Personalised recommendations