, Volume 25, Issue 3, pp 311–317 | Cite as

Thermal conduction through porous and dispersed three-phase systems

  • Ramvir Singh
  • R S Beniwal
  • R N Pande
  • D R Chaudhary
Solid State Physics


A loose three-phase system made of metal, non-metal and air is considered resulting from small successive dispersions in effective continuous medium (ecm). The effective thermal conductivity of loose three-phase systems is estimated by extending theecm approach to multi-phase systems. The unsteady state line source (needle) method is employed to determine the effective thermal conductivity of some selected three-phase materials. The calculated and observed values show good agreement suggesting that the continuous medium approach can be applied to estimate effective thermal conductivity of multi-phase systems.


Continuous phase effective continuous medium successive dispersion unsteady state 


44.10 44.90 66.70 72.15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brailsford A D and Major K G 1964Br. J. Appl. Phys. 15 313CrossRefADSGoogle Scholar
  2. Carslaw H S and Jaeger J C 1959Conduction of heat in solids (Oxford: Clarendon Press) 2nd edn pp. 261Google Scholar
  3. Chaudhary D R and Bhandari R C 1968Br. J. Appl. Phys. (J. Phys. D) 1 815ADSGoogle Scholar
  4. Chaudhary D R, Agarwal M P and Bhandari R C 1969Indian J. Pure Appl. Phys. 7 252Google Scholar
  5. Cheng S C and Vachon R I 1969Int. J. Heat Mass Transfer 12 249CrossRefGoogle Scholar
  6. Cheng S C, Law Y S and Kwan C C Y 1972Int. J. Heat Mass Transfer 15 355CrossRefGoogle Scholar
  7. De Veries D A 1952Thesis, Meded. Landbouhogeschool, Wageningen, Vol. 52, No. 1, pp. 1–73Google Scholar
  8. De Veries D A and Peck A J 1958Aust. J. Pure Appl. Phys. 11 255ADSGoogle Scholar
  9. Kumar V and Chaudhary D R 1980Indian J. Pure Appl. Phys. 18 984Google Scholar
  10. Lichtnecker K 1926Physik Z. 27 115Google Scholar
  11. Law Y S 1971Thermal conductivity of two-phase and three-phase heterogeneous solid mixtures M.Sc. thesis, Mech. Engg., Univ. of OttawaGoogle Scholar
  12. Maxwell J C 1904A treatise on electricity and magnetism (Oxford: Clarendon Press) III ed Vol. I, p. 440Google Scholar
  13. Meredith R E and Tobias C W 1960J. Appl. Phys. 31 1270CrossRefADSGoogle Scholar
  14. McPhedran R C and McKenzie D R 1978Proc. R. Soc. (London) A259 45ADSGoogle Scholar
  15. Pande R N, Kumar V and Chaudhary D R 1984Pramana 22 63ADSCrossRefGoogle Scholar
  16. Sugawara A and Yoshizawa Y 1961Aust. J. Phys. 14 469ADSGoogle Scholar
  17. Singh R, Beniwal R S and Kumar V 1984Indian J. Pure Appl. Phys. 22 556Google Scholar
  18. Singh R, Saxena N S and Chaudhary D R 1985J. Phys. D18 1ADSGoogle Scholar
  19. Wiener O 1904Phys. Z. (Germany) 5 332Google Scholar
  20. Woodside and Messmer J H 1961J. Appl. Phys. 32 1688CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 1985

Authors and Affiliations

  • Ramvir Singh
    • 1
  • R S Beniwal
    • 1
  • R N Pande
    • 1
  • D R Chaudhary
    • 1
  1. 1.Department of PhysicsUniversity of RajasthanJaipurIndia

Personalised recommendations