, Volume 47, Issue 6, pp 447–470 | Cite as

A stochastic model for solidification

I. The basic equations, their analysis and solution
  • Shobha Dass
  • Gautam Johri
  • Lakshman Pandey


A 3-dimensional (2-space, 1-time) model relating the diffusion of heat and mass to the kinetic processes at the solid-liquid interface, using a stochastic approach is presented in this paper. This paper is divided in two parts. In the first part the basic set of equations describing solidification alongwith their analysis and solution are given. The process of solidification has a stochastic character and depends on the net probability of transfer of atoms from liquid to the solid phase. This has been modeled by a Markov process in which knowledge of the parameters at the initial time only is needed to evaluate the time evolution of the system. Solidification process is expressed in terms of four coupled equations, namely, the diffusion equations for heat and mass, the equations for concentration of the solid phase and for rate of growth of the solid-liquid interface. The position of the solid-liquid interface is represented with the help of a delta function and it is defined as the surface at which latent heat is evolved. A numerical method is used to solve the equations appearing in the model. In the second part the results i.e. the time evolution of the solid-liquid interface shape and its concentration, rate of growth and temperature are given.


Stochastic solidification binary melt kinetic phase diagrams 




  1. [1]
    F C Flemings, inSolidification processing (McGraw Hill Inc., New York, 1974)Google Scholar
  2. [2]
    W Kurz and D J Fisher, inFundamentals of solidification (Trans-Tech Publication, Switzerland, 1986)Google Scholar
  3. [3]
    P Strimbord, D R Nelson and M Roucheti,Phys. Rev. Lett. 47, 1297 (1981)CrossRefADSGoogle Scholar
  4. [4]
    P Ramachandrarao, G V S Shastri, L Pandey and A Sinha,Acta, Cryst. A47, 206 (1991)Google Scholar
  5. [5]
    D Domb and J L Lebowitz (eds.) inPhase transitions and critical phenomena. (Academic, London, 1983)Google Scholar
  6. [6]
    N Sounders and A P Miodownik,J. Mater. Res. 1, 1803 (1986)Google Scholar
  7. [7]
    F X Kelly and L H Ungar,Phys. Rev. B. 34, 1746 (1986)ADSGoogle Scholar
  8. [8]
    Z Chvoj, Z Kozisek and J Sestak,Thermochim. Acta. 153, 349 (1989)CrossRefGoogle Scholar
  9. [9]
    D T Gillespie,J. Chem. Phys. 74, 661 (1981)CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    D Kashchiev,Cryst. Res. Tech. 19, 1413 (1984)CrossRefGoogle Scholar
  11. [11]
    A K Ray, M Chalom and L K Peters,J. Chem. Phys. 85, 2161 (1986)CrossRefADSGoogle Scholar
  12. [12]
    P Gordon, inPrinciples of phase diagrams in materials (Mc-Graw Hill, 1968; Jersey, 1972)Google Scholar
  13. [13]
    A K Jena and M C Chaturvedi, inPhase transformation in materials. (The Metals Society, Eaglewood Cliffs, New Jersey 1992)Google Scholar
  14. [14]
    A Bruce and D Wallace,Phys. Rev. Lett. 4, 457 (1982)Google Scholar
  15. [15]
    J S Langer and L A Turski,Phys. Rev. A8, 3230 (1973)ADSGoogle Scholar
  16. [16]
    J S Langer and A J Turski,Phys. Rev. A22, 2189 (1980)ADSGoogle Scholar
  17. [17]
    J S Langer and A J Swartz,Phys. Rev. A21, 948 (1980)ADSGoogle Scholar
  18. [18]
    V P Skripov and A V Skripov,Usp. Fiz. Nauk. 128, 193 (1979)Google Scholar
  19. [19]
    V P Skripov and V P Koverda, inSpontaneous crystallization of undercooled liquids (Nauka, Moscow, 1984)Google Scholar
  20. [20]
    A D J Haymet and D W Oxtoby,J. Chem. Phys. 84, 1769 (1986)CrossRefADSGoogle Scholar
  21. [21]
    A D J Haymet,Prog. Solid State Chem. 17, 1 (1986)CrossRefGoogle Scholar
  22. [22]
    B B Mandelbrot, inThe fractal geometry of nature (Freeman, San Francisco, 1982)MATHGoogle Scholar
  23. [23]
    D S Cannel and C Aubert, inFractal and non fractal patterns in physics, in growth and form edited by H E Stanley and N Ostrowski (Martinus Nijhoff, Dordrecht, 1986)Google Scholar
  24. [24]
    B Caroli, C. Caroli and B J Roulet,J. Cryst. Growth 66, 575 (1984)CrossRefGoogle Scholar
  25. [25]
    T A Cherepanova,J. Cryst. Growth 59, 371 (1980)Google Scholar
  26. [26]
    T A Cherepanova,Phys. Status. Solidi A58, 469 (1980)Google Scholar
  27. [27]
    T A Cherepanova,J. Cryst. Growth 52, 319 (1981)CrossRefGoogle Scholar
  28. [28]
    L Pandey and P Ramachandrarao,Acta. Metall. 35, 10, 2549 (1987)Google Scholar
  29. [29]
    R Trivedi, P. Magnin and W Kurz,Acta Metall. 35, 971 (1987)CrossRefGoogle Scholar
  30. [30]
    G S Reddy and J A Sekhar,J. Mater. Sci. 21, 3535 (1985)CrossRefGoogle Scholar
  31. [31]
    Z Chvoj,Czech. J. Phys. B37, 1256 (1987)CrossRefADSMathSciNetGoogle Scholar
  32. [32]
    Z Chvoj,Cryst. Res. Tech. 21, 8, 1003 (1986)CrossRefADSGoogle Scholar
  33. [33]
    Z Chvoj,Czech. J. Phys. B37, 607 (1987)CrossRefADSMathSciNetGoogle Scholar
  34. [34]
    Z Chvoj,Czech. J. Phys. B33, 961 (1983)CrossRefADSGoogle Scholar
  35. [35]
    Z Chvoj,Czech. J. Phys. B33, 1060 (1983)CrossRefADSGoogle Scholar
  36. [36]
    Z Chvoj,Czech. J. Phys. B34, 548 (1984)CrossRefADSGoogle Scholar
  37. [37]
    Z Chvoj,Czech. J. Phys. B36, 863 (1986)CrossRefADSGoogle Scholar
  38. [38]
    Z Chvoj,Czech. J. Phys. B37, 1340 (1987)CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    Z Chvoj,Czech. J. Phys. B40, 473 (1990)CrossRefADSGoogle Scholar
  40. [40]
    Z Chvoj,Czech. J. Phys. B40, 483 (1990)CrossRefADSGoogle Scholar
  41. [41]
    S Dass, G Johri, L Pandey and P Ramachandrarao, inII Annual General Meeting of MRSI held at NPL, New Delhi, February 9–10 (1991)Google Scholar
  42. [42]
    C W Gardiner, inHandbook of stochastic methods (Springer-Verlag, Berlin, 1985)Google Scholar
  43. [43]
    C N R Rao and K J Rao, inPhase transitions in solids (Mc-Graw Hill, Chatham, 1978)Google Scholar
  44. [44]
    J B Scarborough, inNumerical mathematical analysis (Oxford and IBH Publishing Co., New Delhi, 1976)Google Scholar
  45. [45]
    M Krizek and P Neittaanmaki, inFinite element approximation of variational problems and applications (Longman Scientific with John Wiley Inc., New York, 1990)MATHGoogle Scholar
  46. [46]
    B Chalmers, inPrinciples of Solidification (John Wiley and Sons, New York, 1967) p. 7Google Scholar
  47. [47]
    R E Reed-Hill, inPhysical metallurgy principles (EWP, New Delhi, 1975) p. 535Google Scholar
  48. [48]
    R C Weast (ed.)CRC Handbook of Chemistry and Physics, (CRC Press Inc., 1988)Google Scholar

Copyright information

© the Indian Academy of Sciences 1996

Authors and Affiliations

  • Shobha Dass
    • 1
  • Gautam Johri
    • 1
    • 2
  • Lakshman Pandey
    • 1
    • 2
  1. 1.Govt. M.H. College of Science and Home ScienceJabalpurIndia
  2. 2.Department of Post Graduate Studies and Research in PhysicsRani Durgavati UniversityJabalpurIndia

Personalised recommendations