, Volume 38, Issue 5, pp 417–468 | Cite as

Becchi-Rouet-Stora-Tyutin quantization and Hamiltonian formalism

  • Jnanadeva Maharana


An introductory review of BRST hamiltonian formalism is presented. The method of quantization of gauge and string theories is discussed. A few simple examples are presented to illustrate the BRST techniques.


BRST constraints nilpotency Yang-Mills theory string theory 




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ademolloet al 1974Nuovo Cimento A21 77MathSciNetGoogle Scholar
  2. Batalin I A and Vilkovisky G A 1977Phys. Lett. B69 309ADSGoogle Scholar
  3. Batalin I A and Fradkin E S 1980 inGroup theoretical methods in physics Vol. II MoscowGoogle Scholar
  4. Becchi C, Rouet A and Stora 1974Phys. Lett. B52 334ADSGoogle Scholar
  5. Becchi C, Rouet A and Stora 1975Commun. Math. Phys. 42 127CrossRefADSMathSciNetGoogle Scholar
  6. Becchi C, Rouet A and Stora 1976Ann. Phys. (NY) 98 287CrossRefADSMathSciNetGoogle Scholar
  7. Brink L, Di Vecchia P and Howe P 1976Phys. Lett. B65 471ADSGoogle Scholar
  8. Callan C G, Friedan D, Martinec E J and Perry M J 1985Nucl. Phys. B262 593CrossRefADSMathSciNetGoogle Scholar
  9. Coleman S 1988Aspects of symmetry (Cambridge: University Press)Google Scholar
  10. Deser S and Zumino B 1976Phys. Lett. B65 369ADSMathSciNetGoogle Scholar
  11. Dirac P A M 1950Can. J. Math. 2 129MATHMathSciNetGoogle Scholar
  12. Dirac P A M 1958Proc. R. Soc. (London) A246 326ADSMathSciNetGoogle Scholar
  13. Dirac P A M 1967Lectures on quantum mechanics, Yeshiva University (Academic Press)Google Scholar
  14. Dijkgraff R, Verlinde E and Verlinde H 1990Notes on topological string theory and 2D gravity Preprint IASSNS-HEP-90/80 PUT-1217 and references thereinGoogle Scholar
  15. Distler 1990Nucl. Phys. B340 523CrossRefADSMathSciNetGoogle Scholar
  16. Faddeev L D and Popov V N 1967Phys. Lett. B25 29ADSGoogle Scholar
  17. Faddeev L D 1969Theor. Math. Phys. 1 3CrossRefMathSciNetGoogle Scholar
  18. Feynman R P 1963Acta. Phys. Pol. 24 697MathSciNetGoogle Scholar
  19. Feynman R P and Hibbs A 1965Quantum mechanics and path integrals (New York: McGraw-Hill)MATHGoogle Scholar
  20. Fradkin E S and Vilkovisky G A 1975Phys. Lett. B55 224ADSMathSciNetGoogle Scholar
  21. Fradkin E S and Fradkina T E 1978Phys. Lett. B72 343ADSGoogle Scholar
  22. Fradkin E S and Tseytlin A A 1985Phys. Lett. B158 316ADSMathSciNetGoogle Scholar
  23. Fradkin E S and Tseytlin A A 1985Nucl. Phys. B261 1CrossRefADSMathSciNetGoogle Scholar
  24. Friedan D 1985Phys. Lett. B162 102ADSMathSciNetGoogle Scholar
  25. Fritzsch H and Gell-Mann M 1972Proc. of XVI International conference on high energy physics, Batavia (eds) A Roberts and J D JacksonGoogle Scholar
  26. Fritzsch H, Gell-Mann M and Leutwyler H 1973Phys. Lett. B47 365ADSGoogle Scholar
  27. Fubini S, Maharana J, Roncadelli M and Veneziano G 1989Nucl. Phys. B316 36CrossRefADSMathSciNetGoogle Scholar
  28. Glashow S L 1980Rev. Mod. Phys. 52 539; Nobel Lecture 1979CrossRefADSMathSciNetGoogle Scholar
  29. Goto T 1971Prog. Theor. Phys. 46 1560MATHCrossRefADSMathSciNetGoogle Scholar
  30. Green M B, Schwarz J H and Witten E 1987Superstrings (Cambridge: University Press). Vol. I and IIGoogle Scholar
  31. Hanson A J, Regge T and Teitelboim C 1974Constrained Hamiltonian systems, Academic Nazionale dei Lincei, Roma, ItalyGoogle Scholar
  32. Hara O 1971Prog. Theor. Phys. 46 1549MATHCrossRefADSMathSciNetGoogle Scholar
  33. Henneaux M 1985Phys. Rep. C126 1CrossRefADSMathSciNetGoogle Scholar
  34. Henneaux M and Teitelboim C 1982Ann. Phys. (N Y) 143 127CrossRefADSMathSciNetGoogle Scholar
  35. ’t Hooft G 1971Nucl. Phys. B33 173,B35 167CrossRefADSGoogle Scholar
  36. ’t Hooft G and Veltman M 1972Nucl. Phys. B44 189,B50 318CrossRefADSGoogle Scholar
  37. Hwang S 1983Phys. Rev. D28 2614ADSGoogle Scholar
  38. Itzykson C and Zuber J -B 1985Quantum field theory, (McGraw-Hill). Most of the relevant calculations in field theory can be found in this bookGoogle Scholar
  39. Jain S 1988Int. J. Mod. Phys. A3 1759ADSGoogle Scholar
  40. Jacob M 1974Dual theory — physics reports reprint book series (North Holland)Google Scholar
  41. Kaku M and Kikkawa K 1974Phys. Rev. D10 1823ADSGoogle Scholar
  42. Kaku M 1986Nucl. Phys. B267 125CrossRefADSMathSciNetGoogle Scholar
  43. Kato M and Ogawa K 1983Nucl. Phys. B212 443CrossRefADSGoogle Scholar
  44. Llewellyn Smith C H 1979in Quantum flavordynamics, quantum chromodynamics and unified theories (eds) K T Mahanthapa and J Randa (Plenum Press)Google Scholar
  45. Maharana J 1983aPhys. Lett. B128 441ADSGoogle Scholar
  46. Maharana J 1983bAnn. Inst. Henri Poineare 39 193MathSciNetGoogle Scholar
  47. Maharana J 1988Phys. Rev. D37 555ADSGoogle Scholar
  48. Maharana J and Veneziano G 1986Phys. Lett. B169 177ADSMathSciNetGoogle Scholar
  49. Maharana J and Veneziano G 1987Nucl. Phys. B283 126CrossRefADSMathSciNetGoogle Scholar
  50. Mandelstam S 1968Phys. Rev. 175 1580CrossRefADSGoogle Scholar
  51. Mandelstam S 1974Phys. Rep. C13 259CrossRefADSGoogle Scholar
  52. Nambu Y 1970Lectures at Copenhagen Summer Symposium (unpublished). The interest in string theory originates from the proposal of Veneziano to study the dynamics of strongly interacting particles in 1968. G VenezianoNuovo Cimento A57 190Google Scholar
  53. Nemeschansky D, Preitschopt C and Weinstein M 1988Ann Phys. (NY) 183 226CrossRefADSGoogle Scholar
  54. Polyakov A M 1981Phys. Lett. B103 207, 211ADSMathSciNetGoogle Scholar
  55. Popov V N 1978Functional integral in field theory and statistical mechanics (Riedel Pub)Google Scholar
  56. Rebbi C 1974Phys. Rep. C12 1CrossRefADSMathSciNetGoogle Scholar
  57. Salam A 1980Rev. Mod. Phys. 52 525 Nobel Lecture 1979CrossRefADSMathSciNetGoogle Scholar
  58. Scherk J 1970Rev. Mod Phys. 47 123CrossRefADSMathSciNetGoogle Scholar
  59. Schwarz J H 1982Phys. Rep. C89 223CrossRefADSGoogle Scholar
  60. Schwarz J H 1985Superstrings (World Scientific)Google Scholar
  61. Sen A 1985Phys. Rev. D32 2102ADSGoogle Scholar
  62. Sen A 1986 Tieste Lectures and references thereinGoogle Scholar
  63. Sen A 1990Invited talk of Int. Colloquium on Modern Quantum Field Theory, TIFR, Bombay (World Scientific Pub)Google Scholar
  64. Siegel W and Zweibach 1985Nucl. Phys. B263 105ADSGoogle Scholar
  65. Slavnov A A 1972Theor. Math. Phys. 10 99CrossRefGoogle Scholar
  66. Sudarshan E C G and Mukunda N 1974Classical dynamics—a modern perspective (John Wiley)Google Scholar
  67. Sundermeyer K 1982Constraints dynamics, Springer-Verlag Lecture Notes in PhysicsGoogle Scholar
  68. Taylor J C 1971Nucl. Phys. B33 436CrossRefADSGoogle Scholar
  69. Tyutin I V 1975Gauge invariance in field theory and statistical physics in operator formalism. Labedev Institute Precinct FIAN No. 39 in Russian (unpublished)Google Scholar
  70. Velinde E and Verlinde H 1990 IASSNS-HEP 90/40 PUPT-1176Google Scholar
  71. Virasoro M A 1970Phys. Rev. D1 2933ADSGoogle Scholar
  72. Weinberg S W 1980Rev. Mod. Phys. 52 515 Nobel Lecture 1979CrossRefADSMathSciNetGoogle Scholar
  73. Weiss J 1970 unpublished Private Communication from S Fubini and G VenezianoGoogle Scholar
  74. Witten E 1988Commun. Math. Phys. 117 353,118 411MATHCrossRefADSMathSciNetGoogle Scholar
  75. Witten E 1990Nucl. Phys. B340 281CrossRefADSMathSciNetGoogle Scholar
  76. Yang C N and Mills R L 1954Phys. Rev. 96 191CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Indian Academy of Sciences 1992

Authors and Affiliations

  • Jnanadeva Maharana
    • 1
  1. 1.Institute of PhysicsBhubaneswarIndia

Personalised recommendations