Advertisement

Pramana

, Volume 38, Issue 5, pp 417–468 | Cite as

Becchi-Rouet-Stora-Tyutin quantization and Hamiltonian formalism

  • Jnanadeva Maharana
Review
  • 47 Downloads

Abstract

An introductory review of BRST hamiltonian formalism is presented. The method of quantization of gauge and string theories is discussed. A few simple examples are presented to illustrate the BRST techniques.

Keywords

BRST constraints nilpotency Yang-Mills theory string theory 

PACS No

03·20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ademolloet al 1974Nuovo Cimento A21 77MathSciNetGoogle Scholar
  2. Batalin I A and Vilkovisky G A 1977Phys. Lett. B69 309ADSGoogle Scholar
  3. Batalin I A and Fradkin E S 1980 inGroup theoretical methods in physics Vol. II MoscowGoogle Scholar
  4. Becchi C, Rouet A and Stora 1974Phys. Lett. B52 334ADSGoogle Scholar
  5. Becchi C, Rouet A and Stora 1975Commun. Math. Phys. 42 127CrossRefADSMathSciNetGoogle Scholar
  6. Becchi C, Rouet A and Stora 1976Ann. Phys. (NY) 98 287CrossRefADSMathSciNetGoogle Scholar
  7. Brink L, Di Vecchia P and Howe P 1976Phys. Lett. B65 471ADSGoogle Scholar
  8. Callan C G, Friedan D, Martinec E J and Perry M J 1985Nucl. Phys. B262 593CrossRefADSMathSciNetGoogle Scholar
  9. Coleman S 1988Aspects of symmetry (Cambridge: University Press)Google Scholar
  10. Deser S and Zumino B 1976Phys. Lett. B65 369ADSMathSciNetGoogle Scholar
  11. Dirac P A M 1950Can. J. Math. 2 129MATHMathSciNetGoogle Scholar
  12. Dirac P A M 1958Proc. R. Soc. (London) A246 326ADSMathSciNetGoogle Scholar
  13. Dirac P A M 1967Lectures on quantum mechanics, Yeshiva University (Academic Press)Google Scholar
  14. Dijkgraff R, Verlinde E and Verlinde H 1990Notes on topological string theory and 2D gravity Preprint IASSNS-HEP-90/80 PUT-1217 and references thereinGoogle Scholar
  15. Distler 1990Nucl. Phys. B340 523CrossRefADSMathSciNetGoogle Scholar
  16. Faddeev L D and Popov V N 1967Phys. Lett. B25 29ADSGoogle Scholar
  17. Faddeev L D 1969Theor. Math. Phys. 1 3CrossRefMathSciNetGoogle Scholar
  18. Feynman R P 1963Acta. Phys. Pol. 24 697MathSciNetGoogle Scholar
  19. Feynman R P and Hibbs A 1965Quantum mechanics and path integrals (New York: McGraw-Hill)MATHGoogle Scholar
  20. Fradkin E S and Vilkovisky G A 1975Phys. Lett. B55 224ADSMathSciNetGoogle Scholar
  21. Fradkin E S and Fradkina T E 1978Phys. Lett. B72 343ADSGoogle Scholar
  22. Fradkin E S and Tseytlin A A 1985Phys. Lett. B158 316ADSMathSciNetGoogle Scholar
  23. Fradkin E S and Tseytlin A A 1985Nucl. Phys. B261 1CrossRefADSMathSciNetGoogle Scholar
  24. Friedan D 1985Phys. Lett. B162 102ADSMathSciNetGoogle Scholar
  25. Fritzsch H and Gell-Mann M 1972Proc. of XVI International conference on high energy physics, Batavia (eds) A Roberts and J D JacksonGoogle Scholar
  26. Fritzsch H, Gell-Mann M and Leutwyler H 1973Phys. Lett. B47 365ADSGoogle Scholar
  27. Fubini S, Maharana J, Roncadelli M and Veneziano G 1989Nucl. Phys. B316 36CrossRefADSMathSciNetGoogle Scholar
  28. Glashow S L 1980Rev. Mod. Phys. 52 539; Nobel Lecture 1979CrossRefADSMathSciNetGoogle Scholar
  29. Goto T 1971Prog. Theor. Phys. 46 1560MATHCrossRefADSMathSciNetGoogle Scholar
  30. Green M B, Schwarz J H and Witten E 1987Superstrings (Cambridge: University Press). Vol. I and IIGoogle Scholar
  31. Hanson A J, Regge T and Teitelboim C 1974Constrained Hamiltonian systems, Academic Nazionale dei Lincei, Roma, ItalyGoogle Scholar
  32. Hara O 1971Prog. Theor. Phys. 46 1549MATHCrossRefADSMathSciNetGoogle Scholar
  33. Henneaux M 1985Phys. Rep. C126 1CrossRefADSMathSciNetGoogle Scholar
  34. Henneaux M and Teitelboim C 1982Ann. Phys. (N Y) 143 127CrossRefADSMathSciNetGoogle Scholar
  35. ’t Hooft G 1971Nucl. Phys. B33 173,B35 167CrossRefADSGoogle Scholar
  36. ’t Hooft G and Veltman M 1972Nucl. Phys. B44 189,B50 318CrossRefADSGoogle Scholar
  37. Hwang S 1983Phys. Rev. D28 2614ADSGoogle Scholar
  38. Itzykson C and Zuber J -B 1985Quantum field theory, (McGraw-Hill). Most of the relevant calculations in field theory can be found in this bookGoogle Scholar
  39. Jain S 1988Int. J. Mod. Phys. A3 1759ADSGoogle Scholar
  40. Jacob M 1974Dual theory — physics reports reprint book series (North Holland)Google Scholar
  41. Kaku M and Kikkawa K 1974Phys. Rev. D10 1823ADSGoogle Scholar
  42. Kaku M 1986Nucl. Phys. B267 125CrossRefADSMathSciNetGoogle Scholar
  43. Kato M and Ogawa K 1983Nucl. Phys. B212 443CrossRefADSGoogle Scholar
  44. Llewellyn Smith C H 1979in Quantum flavordynamics, quantum chromodynamics and unified theories (eds) K T Mahanthapa and J Randa (Plenum Press)Google Scholar
  45. Maharana J 1983aPhys. Lett. B128 441ADSGoogle Scholar
  46. Maharana J 1983bAnn. Inst. Henri Poineare 39 193MathSciNetGoogle Scholar
  47. Maharana J 1988Phys. Rev. D37 555ADSGoogle Scholar
  48. Maharana J and Veneziano G 1986Phys. Lett. B169 177ADSMathSciNetGoogle Scholar
  49. Maharana J and Veneziano G 1987Nucl. Phys. B283 126CrossRefADSMathSciNetGoogle Scholar
  50. Mandelstam S 1968Phys. Rev. 175 1580CrossRefADSGoogle Scholar
  51. Mandelstam S 1974Phys. Rep. C13 259CrossRefADSGoogle Scholar
  52. Nambu Y 1970Lectures at Copenhagen Summer Symposium (unpublished). The interest in string theory originates from the proposal of Veneziano to study the dynamics of strongly interacting particles in 1968. G VenezianoNuovo Cimento A57 190Google Scholar
  53. Nemeschansky D, Preitschopt C and Weinstein M 1988Ann Phys. (NY) 183 226CrossRefADSGoogle Scholar
  54. Polyakov A M 1981Phys. Lett. B103 207, 211ADSMathSciNetGoogle Scholar
  55. Popov V N 1978Functional integral in field theory and statistical mechanics (Riedel Pub)Google Scholar
  56. Rebbi C 1974Phys. Rep. C12 1CrossRefADSMathSciNetGoogle Scholar
  57. Salam A 1980Rev. Mod. Phys. 52 525 Nobel Lecture 1979CrossRefADSMathSciNetGoogle Scholar
  58. Scherk J 1970Rev. Mod Phys. 47 123CrossRefADSMathSciNetGoogle Scholar
  59. Schwarz J H 1982Phys. Rep. C89 223CrossRefADSGoogle Scholar
  60. Schwarz J H 1985Superstrings (World Scientific)Google Scholar
  61. Sen A 1985Phys. Rev. D32 2102ADSGoogle Scholar
  62. Sen A 1986 Tieste Lectures and references thereinGoogle Scholar
  63. Sen A 1990Invited talk of Int. Colloquium on Modern Quantum Field Theory, TIFR, Bombay (World Scientific Pub)Google Scholar
  64. Siegel W and Zweibach 1985Nucl. Phys. B263 105ADSGoogle Scholar
  65. Slavnov A A 1972Theor. Math. Phys. 10 99CrossRefGoogle Scholar
  66. Sudarshan E C G and Mukunda N 1974Classical dynamics—a modern perspective (John Wiley)Google Scholar
  67. Sundermeyer K 1982Constraints dynamics, Springer-Verlag Lecture Notes in PhysicsGoogle Scholar
  68. Taylor J C 1971Nucl. Phys. B33 436CrossRefADSGoogle Scholar
  69. Tyutin I V 1975Gauge invariance in field theory and statistical physics in operator formalism. Labedev Institute Precinct FIAN No. 39 in Russian (unpublished)Google Scholar
  70. Velinde E and Verlinde H 1990 IASSNS-HEP 90/40 PUPT-1176Google Scholar
  71. Virasoro M A 1970Phys. Rev. D1 2933ADSGoogle Scholar
  72. Weinberg S W 1980Rev. Mod. Phys. 52 515 Nobel Lecture 1979CrossRefADSMathSciNetGoogle Scholar
  73. Weiss J 1970 unpublished Private Communication from S Fubini and G VenezianoGoogle Scholar
  74. Witten E 1988Commun. Math. Phys. 117 353,118 411MATHCrossRefADSMathSciNetGoogle Scholar
  75. Witten E 1990Nucl. Phys. B340 281CrossRefADSMathSciNetGoogle Scholar
  76. Yang C N and Mills R L 1954Phys. Rev. 96 191CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Indian Academy of Sciences 1992

Authors and Affiliations

  • Jnanadeva Maharana
    • 1
  1. 1.Institute of PhysicsBhubaneswarIndia

Personalised recommendations