Advertisement

Pramana

, Volume 40, Issue 6, pp 477–483 | Cite as

Stability of quark gluon plasma to nielsen-olesen mode

  • Vishnu M Bannur
  • Predhiman K Kaw
Research Articles

Abstract

Nielsen and Olesen showed that perturbative vacuum with uniform chromomagnetic field in one space and one color direction is unstable. This instability is called Nielsen-Olesen instability (NOI), and leads to formation of a ‘spaghetti of flux tubes’ as a model for non-perturbative vacuum and confinement. We re-examine this instability in presence of color sources, quarks and gluons, at a finite temperature and find that at sufficiently high temperature NOI is stabilized due to an ‘effective mass’ of gluons arising through plasma effects. This explains how a QGP with no confinement effects may exist at high temperature. As the temperature is lowered, NOI reappears at a valueT=T c, which is very close to confinement-deconfinement transition from hadrons to QGP..

Keywords

QCD vacuum Nielsen-Olesen instability quark gluon plasma fluid equations stabilization phase transition 

PACS Nos

12.38 12.90 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N K Nielsen and P Olesen,Nucl. Phys. B144, 376 (1978)CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    V P Nair and C Rosenzweig,Phys. Lett. B135, 150 (1984)Google Scholar
  3. [3]
    M Baker, J S Ball and F Zachariasen,Phys. Rev. D37, 1036 (1988)ADSGoogle Scholar
  4. [4]
    R Friedberg and T D Lee,Phys. Rev. D16, 1096 (1977)ADSGoogle Scholar
  5. [5]
    E V Shuryak,The QCD vacuum, hadrons and the superdense matter (Singapore, World Scientific, 1988)Google Scholar
  6. [6]
    J Ambjorn and P Olesen,Nucl. Phys. B170, 265 (1980)CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    J Ambjorn and P Olesen,Phys. Lett. B257, 201 (1991)ADSGoogle Scholar
  8. [8]
    G K Savvidy,Phys. Lett. B71, 133 (1977) S G Matinyan and G K Savvidy,Nucl. Phys. B134, 539 (1978)ADSGoogle Scholar
  9. [9]
    V M Bannur, L S Celenza, C M Shakin and H W Wang, Brooklyn College Report: BCCNT 89/032/189 — unpublished; L S Celenza, C M Shakin, H W Wang and X Yang,Int. J. Mod. Phys. A4, 3807 (1989)Google Scholar
  10. [10]
    B Petersson,Nucl. Phys. A525, 237c (1991)Google Scholar
  11. [11]
    J I Kapusta,Nucl. Phys. B190, 425 (1981)CrossRefADSGoogle Scholar
  12. [12]
    M Ninomiya and N Sakai,Nucl. Phys. B190, 316 (1981)CrossRefADSGoogle Scholar
  13. [13]
    J Bhatt, P K Kaw and J C Parikh,Phys. Rev. D39, 646 (1989)ADSGoogle Scholar
  14. [14]
    H T Elze and U Heinz, inQuark gluon plasma edited by R C Hwa (Singapore, World Scientific, 1990); S Mrowczynski in the same volumeGoogle Scholar
  15. [15]
    S K Wong,Nuovo Cimento A65, 689 (1970)Google Scholar
  16. [16]
    K Kajantie and C Montonen,Phys. Scr. 22, 555 (1981)CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    S R de Groot, W A van Leeuwen and Ch G van Weert,Relativistic kinetic theory (Amsterdam, North-Holland, 1980)Google Scholar
  18. [18]
    P Olesen,Phys. Scr. 23, 1000 (1981)CrossRefADSGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1993

Authors and Affiliations

  • Vishnu M Bannur
    • 1
  • Predhiman K Kaw
    • 1
  1. 1.Institute for Plasma ResearchBhat, GandhinagarIndia

Personalised recommendations