, Volume 40, Issue 6, pp 477–483 | Cite as

Stability of quark gluon plasma to nielsen-olesen mode

  • Vishnu M Bannur
  • Predhiman K Kaw
Research Articles


Nielsen and Olesen showed that perturbative vacuum with uniform chromomagnetic field in one space and one color direction is unstable. This instability is called Nielsen-Olesen instability (NOI), and leads to formation of a ‘spaghetti of flux tubes’ as a model for non-perturbative vacuum and confinement. We re-examine this instability in presence of color sources, quarks and gluons, at a finite temperature and find that at sufficiently high temperature NOI is stabilized due to an ‘effective mass’ of gluons arising through plasma effects. This explains how a QGP with no confinement effects may exist at high temperature. As the temperature is lowered, NOI reappears at a valueT=T c, which is very close to confinement-deconfinement transition from hadrons to QGP..


QCD vacuum Nielsen-Olesen instability quark gluon plasma fluid equations stabilization phase transition 


12.38 12.90 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N K Nielsen and P Olesen,Nucl. Phys. B144, 376 (1978)CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    V P Nair and C Rosenzweig,Phys. Lett. B135, 150 (1984)Google Scholar
  3. [3]
    M Baker, J S Ball and F Zachariasen,Phys. Rev. D37, 1036 (1988)ADSGoogle Scholar
  4. [4]
    R Friedberg and T D Lee,Phys. Rev. D16, 1096 (1977)ADSGoogle Scholar
  5. [5]
    E V Shuryak,The QCD vacuum, hadrons and the superdense matter (Singapore, World Scientific, 1988)Google Scholar
  6. [6]
    J Ambjorn and P Olesen,Nucl. Phys. B170, 265 (1980)CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    J Ambjorn and P Olesen,Phys. Lett. B257, 201 (1991)ADSGoogle Scholar
  8. [8]
    G K Savvidy,Phys. Lett. B71, 133 (1977) S G Matinyan and G K Savvidy,Nucl. Phys. B134, 539 (1978)ADSGoogle Scholar
  9. [9]
    V M Bannur, L S Celenza, C M Shakin and H W Wang, Brooklyn College Report: BCCNT 89/032/189 — unpublished; L S Celenza, C M Shakin, H W Wang and X Yang,Int. J. Mod. Phys. A4, 3807 (1989)Google Scholar
  10. [10]
    B Petersson,Nucl. Phys. A525, 237c (1991)Google Scholar
  11. [11]
    J I Kapusta,Nucl. Phys. B190, 425 (1981)CrossRefADSGoogle Scholar
  12. [12]
    M Ninomiya and N Sakai,Nucl. Phys. B190, 316 (1981)CrossRefADSGoogle Scholar
  13. [13]
    J Bhatt, P K Kaw and J C Parikh,Phys. Rev. D39, 646 (1989)ADSGoogle Scholar
  14. [14]
    H T Elze and U Heinz, inQuark gluon plasma edited by R C Hwa (Singapore, World Scientific, 1990); S Mrowczynski in the same volumeGoogle Scholar
  15. [15]
    S K Wong,Nuovo Cimento A65, 689 (1970)Google Scholar
  16. [16]
    K Kajantie and C Montonen,Phys. Scr. 22, 555 (1981)CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    S R de Groot, W A van Leeuwen and Ch G van Weert,Relativistic kinetic theory (Amsterdam, North-Holland, 1980)Google Scholar
  18. [18]
    P Olesen,Phys. Scr. 23, 1000 (1981)CrossRefADSGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1993

Authors and Affiliations

  • Vishnu M Bannur
    • 1
  • Predhiman K Kaw
    • 1
  1. 1.Institute for Plasma ResearchBhat, GandhinagarIndia

Personalised recommendations