, Volume 19, Issue 2, pp 159–173 | Cite as

When is a hidden variable theory compatible with quantum mechanics?

  • M D Srinivas
Quantum Mechanics


This paper is devoted to a study of some of the basic conditions which have to be satisfied by a hidden variable theory in order that it can reproduce the quantum mechanical probabilities. Of course one such condition, which emerges from the important theorem of Bell, is that a hidden variable theory has to be non-local. It is shown that a hidden variable theory is also incompatible with the conventional interpretation of mixed states and the mixing operation in quantum theory. It is therefore concluded that, apart from being non-local, a hidden variable theory would also necessarily violate the usual assumption of quantum theory that the density operator provides an adequate characterization of any ensemble of systems, pure or mixed.


Hidden variable theories complete specification of the state of a system compatibility with quantum mechanics local causality density operators mixed ensembles quantum mechanics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belinfante F J 1973A survey of hidden variable theories (Oxford: Pergamon)Google Scholar
  2. Bell J S 1964Physics 1 195Google Scholar
  3. Bell J S 1966Rev. Mod. Phys. 38 447MATHCrossRefADSGoogle Scholar
  4. Bell J S 1971a inFoundations of quantum mechanics, (ed.) B d’Espagnat (New York: Academic Press)Google Scholar
  5. Bell J S 1971b On the hypothesis that the Schrodinger equation is exact (CERN Preprint Ref. TH 1424)Google Scholar
  6. Bell J S 1975 The theory of local beables (CERN Preprint Ref. TH 2053)Google Scholar
  7. Bell J S 1980 Bertlmann’s socks and the nature of reality (CERN Preprint Ref. TH 2926)Google Scholar
  8. Benioff P A and Eckstein H 1977Nuovo Cimento B40 9ADSGoogle Scholar
  9. Bohm D and Bub J 1966Rev. Mod. Phys. 38 470MATHCrossRefADSMathSciNetGoogle Scholar
  10. Bub J 1974The interpretation of quantum mechanics (Dordrecht: Reidel)Google Scholar
  11. Bub J 1976Found. Phys. 6 511CrossRefADSMathSciNetGoogle Scholar
  12. Capasso V, Fortunato D and Selleri F 1970Rev. del Nuovo Cimento 2 149MathSciNetCrossRefADSGoogle Scholar
  13. Clauser J F 1971Am. J. Phys. 39 1095CrossRefADSGoogle Scholar
  14. Clauser J F and Shimomy A 1978Rep. Prog. Phys. 41 1881CrossRefADSGoogle Scholar
  15. Davies E B 1976Quantum theory of open systems (New York: Academic Press)MATHGoogle Scholar
  16. de Broglie L 1948, La Revue Scientifique No. 3292 fasc. 5,87 259Google Scholar
  17. d’Espagnat B 1976Conceptual foundations of quantum mechanics 2nd Ed. (Reading: Benjamin)Google Scholar
  18. d’Espagnat B 1979Sci. Am. 241 128Google Scholar
  19. Fine A 1976 inLogic and probability in quantum mechanics (ed.) P Suppes (Dordrecht: Reidel)Google Scholar
  20. Fine A 1982Phys. Rev. Lett. 48 291CrossRefADSMathSciNetGoogle Scholar
  21. Fine A and Teller P 1978Found. Phys. 8 629CrossRefADSMathSciNetGoogle Scholar
  22. Ghirardi G C, Rimini A and Weber T 1975Nuovo Cimento B29 135MathSciNetADSGoogle Scholar
  23. Ghirardi G C, Rimini A and Weber T 1976Nuovo Cimento B33 457ADSGoogle Scholar
  24. Haag R and Bannier U 1978Commun. Math. Phys. 60 1CrossRefADSMathSciNetGoogle Scholar
  25. Jammer M 1974The philosophy of quantum mechanics (New York: John Wiley)Google Scholar
  26. Kochen S and Specker E P 1967J. Math. Mech. 17 59MATHMathSciNetGoogle Scholar
  27. Lochak G 1975Found. Phys. 6 173CrossRefADSMathSciNetGoogle Scholar
  28. Mielnik B 1974Commun. Math. Phys. 37 221CrossRefADSMathSciNetGoogle Scholar
  29. Mugur-Schächter M 1977 inQuantum mechanics a half century later (eds.) J Leite-Lopes and M Paty (Dordrecht: Reidel)Google Scholar
  30. Newton R G 1976Nuovo Cimento B33 454ADSGoogle Scholar
  31. Roy S M 1980Phys. News 11 Google Scholar
  32. Selleri F and Tarozzi G 1981Rev. del Nuovo Cimento 4 1CrossRefGoogle Scholar
  33. Srinivas M D 1975J. Math. Phys. 16 1672CrossRefADSMathSciNetGoogle Scholar
  34. Srinivas M D 1978J. Math. Phys. 19 1705CrossRefADSMathSciNetGoogle Scholar
  35. Srinivas M D 1980Commun. Math. Phys. 71 131MATHCrossRefADSMathSciNetGoogle Scholar
  36. Srinivas M D 1982,The Wave-particle Dualism (eds.) S Dineret al (Dordrecht: Reidel)Google Scholar
  37. Srinivas M D and Wolf E 1975Phys. Rev. D11 1477ADSMathSciNetGoogle Scholar
  38. Vandana Shiva 1978Hidden variables and locality in quantum mechanics Ph.D. Thesis (unpublished) (University of Western Ontario)Google Scholar
  39. Virendra Singh 1980 inGravitation, quanta and the universe, (eds) A R Prasanna, J V Narlikar and C V Visheveshvara (New Delhi; Wiley Eastern)Google Scholar
  40. Wigner E P 1932Phys. Rev. 40 749MATHCrossRefADSGoogle Scholar
  41. Wigner E P 1963Am. J. Phys. 31 6MATHCrossRefADSMathSciNetGoogle Scholar
  42. Wigner E P 1970Am. J. Phys. 38 1005CrossRefADSGoogle Scholar
  43. Wigner E P 1971 inPerspectives in quantum theory (eds) W Yourgrau and T van der Merwe (Cambridge: MIT Press)Google Scholar

Copyright information

© the Indian Academy of Sciences 1982

Authors and Affiliations

  • M D Srinivas
    • 1
  1. 1.Department of Theoretical PhysicsUniversity of MadrasMadrasIndia

Personalised recommendations