Advertisement

Pramana

, Volume 27, Issue 3, pp 449–457 | Cite as

Pressure-induced structural transitions in PbI2: A high-pressure Raman and optical absorption study

  • A Jayaraman
  • R G Maines
  • T Chattopadhyay
Solid State Physics

Abstract

The effect of pressure on the 2H and 4H polytype of PbI2 has been investigated by Raman and optical absorption spectroscopy, using the diamond anvil cell. The 2H-polytype undergoes pressure-induced phase transitions at 5 kbar and near 30 kbar. The 4H-polytype exhibits phase transitions near 8 kbar and above 30 kbar. The Raman modes abruptly change at these pressures. The optical absorption edge shifts red at the rate of 15±1 MeV/kbar in the 2H-PbI2 and at the rate of 7 MeV/kbar in phase II. The latter phase is most likely to possess a 3d-structure and not a layer type. The possible structures for the high pressure phases are discussed.

Keywords

Lead iodide high pressure study Raman spectroscopy optical absorption 

PACS No

62.50 64.70 78.30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arashi H and Ishigame M 1982Phys. Status. Solidi. A71 313Google Scholar
  2. Barnett J D, Block S and Piermarini G J 1973Rev. Sci. Instrum. 44 1CrossRefADSGoogle Scholar
  3. Belyi N M, Bobyr A V, Vinogradov E A, Gorban I S, Gubanov V A, Zhizhin G N, Melnik N N, Orienko V F, Panfilov V V and Sobbotin S 1982Sov. Phys. Solid State 24 502Google Scholar
  4. Bridgman P W 1937Proc. Am. Acad. Arts Sci. 72 45Google Scholar
  5. Bridgman P W 1948Proc. Am. Acad. Arts Sci. 76 71Google Scholar
  6. Carillon C and Martinez G 1977Nuovo Cimento 38 496CrossRefGoogle Scholar
  7. Hanoka J I and Vand V 1968J. Appl. Phys. 39 5288CrossRefADSGoogle Scholar
  8. Hanoka J L, Vedam K and Hensich H K 1967Proc. Int. Conf. Crystal Growth, Boston (ed.) H S Peiser (London: Pergamon) p. 369Google Scholar
  9. Jayaraman A, Batlogg B and Van Uitert L G 1985Phys. Rev. B31 5423ADSGoogle Scholar
  10. Katahama H, Nakashima S, Mitsuishi A, Ishigame M and Arashi H 1983J. Phys. Chem. Solids 44 1081CrossRefGoogle Scholar
  11. Khilji M Y, Sherman W F and Wilkinson G R 1982J. Cryst. Spectrosc. Res. 12 45CrossRefGoogle Scholar
  12. Khilji M Y, Sherman W F, Stadtmuller A and Wilkinson G R 1981J. Raman Spectrosc. 11 238CrossRefGoogle Scholar
  13. Martinez G 1980 inHandbook on semiconductors (ed.) Balkanski (Amsterdam: North Holland) Vol. 2, p. 199Google Scholar
  14. Piermarini G J and Block S 1975Rev. Sci. Instrum. 46 973CrossRefADSGoogle Scholar
  15. Pistorius C W F T 1976Progress in solid state chemistry (ed.) H Reiss (Oxford and New York: Pergamon) Vol. 11Google Scholar
  16. Powell M J 1978Philos. Mag. B38 71Google Scholar
  17. Prasad R 1976J. Phys. Chem. Solids 37 337CrossRefGoogle Scholar
  18. Richter P W and Clark J B 1979High Temp. High Pressure 11 703Google Scholar
  19. Schluter J C and Schluter M 1974Phys. Rev. B9 1652ADSGoogle Scholar
  20. Seifert K 1968 Habilitationsschrift, University of BonnGoogle Scholar
  21. Zallen R and Slade M L 1975Solid State Commun. 17 1561CrossRefADSGoogle Scholar
  22. Zallen R and Slade M L (unpublished)Google Scholar

Copyright information

© Indian Academy of Sciences 1986

Authors and Affiliations

  • A Jayaraman
    • 1
  • R G Maines
    • 1
  • T Chattopadhyay
    • 1
    • 2
  1. 1.AT&T Bell LaboratoriesMurray HillUSA
  2. 2.Centre d’Etudes Nucleaires, DRF/SPh-MDNGrenobleFrance

Personalised recommendations