, Volume 43, Issue 4, pp 255–272 | Cite as

A basis-free approach to time-reversal for symmetry groups

  • L C Biedenharn
  • E C G Sudarshan


We develop a basis-free approach to time-reversal for the quantal angular momentum group,SU2, and apply these methods to the physical symmetrySU2isospin,SU3flavor,SU3nuclear and the nuclear collective symmetry groupSL(3,R) of Gell-Mann and Tomonaga.


Time reversal quantum mechanics 




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E P Wigner, Göttinger Nachrichten,Math. Nachr. 31, 546 (1932)Google Scholar
  2. [2]
    J P Elliott,Proc. R. Soc. A245, 128 (1958)ADSGoogle Scholar
  3. [3]
    (Private communication, 1968). cf. L C Biedenharn and P Truini, inElementary particles and the universe, essays in honor of Murray Gell-Mann, edited by John H Schwarz, Cambridge Univ. Press, (Cambridge, 1991) p. 157 ffGoogle Scholar
  4. [4]
    S Tomonaga,Prog. Theor. Phys. (Jpn)13, 467 (1955) (The promised paper applying this method to three dimensions was never published)CrossRefADSMathSciNetGoogle Scholar
  5. [6]
    R Gilmore,Lie groups, Lie algebras and some of their applications (Wiley, New York, 1974)MATHGoogle Scholar
  6. [7]
    B G Wybourne,Classical groups for physicists (Wiley, New York, 1974)MATHGoogle Scholar
  7. [8]
    E P Wigner,Group theory and its application to the quantum mechanics of atomic spectra (Academic Press, New York, 1959)MATHGoogle Scholar
  8. [9]
    L C Biedenharn and J D Louck,Angular momentum in quantum physics, Vol 8 in the Ency. Math and Applications (edited by G-C Rota), (Cambridge Univ. Press, Cambridge, 1991)Google Scholar
  9. [11]
    Jacques Tits, Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen,Lect. Notes in Math 40 (Springer Verlag, Berlin, 1967)MATHGoogle Scholar
  10. [12]
    Robert Hermann,Lie groups for physicists, (W A Benjamin, Inc., New York, 1966)MATHGoogle Scholar
  11. [13]
    Every Cartan automorphism (except forD 4) is involuntary, but not necessarily inner. The automorphisms corresponding to Dynkin diagram symmetries are outer [11]MATHGoogle Scholar
  12. [14]
    L C Biedenharn,Phys. Rev. 82, 100 (1951)CrossRefADSMathSciNetMATHGoogle Scholar
  13. [15]
    G Racah,Nuovo. Cimento. 14, 322 (1937)CrossRefGoogle Scholar
  14. [16]
    W Pauli,Rev. Mod. Phys. 13, 203 (1941)MATHCrossRefADSGoogle Scholar
  15. [17]
    L C Biedenharn and M E Rose,Phys. Rev. 83, 459 (1951)CrossRefADSGoogle Scholar
  16. [18]
    M Kobayashi and T Maskawa,Prog. Theor. Phys. 49, 652 (1973)CrossRefADSGoogle Scholar
  17. [19]
    J E Avron, L Sadun, J Segert and B Simon,Phys. Rev. Lett. 61, 1329 (1988)CrossRefADSMathSciNetGoogle Scholar
  18. [20]
    M Gell-Mann and Y Ne’eman,The Eightfold way, (W A Benjamin, Inc., New York, 1964)Google Scholar
  19. [21]
    J D Louck and L C Biedenharn,Adv. Quantum Chem. 23, 129 (1992)Google Scholar
  20. [22]
    The behaviour ofε under conjugation is not fully known. It is known [21] that for the first occurrence of multiplicity (in the 27-plet) the twoL=2 states are split by a ± sign underC a Google Scholar
  21. [23]
    E Witten,Nucl. Phys. B223, 422, 433 (1983)CrossRefADSMathSciNetGoogle Scholar
  22. [24]
    A P Balachandran, V P Nair, S G Rajeev and A Stern,Phys. Rev. Lett. 49, 1124 (1982)CrossRefADSGoogle Scholar
  23. [24a]
    A P Balachandran, V P Nair, S G Rajeev and A Stern,Phys. Rev. D27, 1153 (1983)ADSGoogle Scholar
  24. [25]
    Y Dothan, M Gell-Mann and Y Ne’eman,Phys. Lett. 17 148 (1965)CrossRefADSMathSciNetGoogle Scholar
  25. [26]
    L Weaver and L C Biedenharn,Phys. Lett. B32, 326 (1970)ADSGoogle Scholar
  26. [26a]
    L Weaver and L C Biedenharn,Nucl. Phys. A185, 1 (1972)ADSGoogle Scholar
  27. [27]
    L Weaver, R Y Cusson and L C Biedenharn,Ann. Phys. 102, 493 (1976)CrossRefADSMathSciNetGoogle Scholar
  28. [28]
    D J Rowe, M G Vassanji and J Carvalho,Nucl. Phys. A504, 76 (1989)ADSGoogle Scholar
  29. [29]
    G Rosensteel, inGroup theory and special symmetries in nuclear physics (World Scientific, Singapore, 1992) pp. 332Google Scholar
  30. [30]
    L C Biedenharn, R Y Cusson, M Y Han and O L Weaver,Phys. Lett. B42, 257 (1972)ADSGoogle Scholar
  31. [31]
    Even Wigner fell into these traps, using a phase convention for basis states in his nuclear reaction theory, which conflicted with his phase conventions [8] for the WCG coefficients.MATHGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1994

Authors and Affiliations

  • L C Biedenharn
    • 1
  • E C G Sudarshan
    • 1
  1. 1.Center for Particle Physics, Department of PhysicsUniversity of Texas at AustinAustinUSA

Personalised recommendations