, Volume 25, Issue 4, pp 353–361 | Cite as

Gravity-induced weak symmetry breaking and supergravity

  • S P Misra
Relativity And Gravitation


We give here a review of the recent developments of grand unified theories based onN=1 supergravity. We start with a brief introduction of supersymmetry and supergravity multiplets, and then discuss the construction of an invariant Lagrangian. The phenomena of gravity-induced weak symmetry breaking via the super Higgs effect at the tree level, corresponding to the conventional SU(5) gauge group, are then considered. We then extend this idea to the larger group SO(10), showing two possible breaking chains given as (i) SO(10)×susy→SU(2) L ×U(1) R ×U(1) B-L ×SU(3) C (≡ G2113susy→U(1)em×SU(3) C (G LE ) predicting a secondZ-boson having mass lower than 1 TeV, and (ii) SO(10)×susy→SU(2) L ×SU(2) R ×SU(4)→(≡G224susy→ SU(2) L ×U(1) Y ×SU(3) C (≡ G213susy→U(1)em×SU(3) C . We also consider the radiative breaking of weak symmetry via renormalisation group effects, which predicts the top quark mass. Some experimental signatures of the supersymmetric particles are investigated and possible future outlook is discussed.


Supergravity grand unification weak symmetric breaking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbieri R, Ferrara S and Savoy C A 1982Phys. Lett. B119 343ADSGoogle Scholar
  2. Chamseddine A, Arnowitt R and Pran Nath 1982Phys. Rev. Lett. 49 970CrossRefADSGoogle Scholar
  3. Coleman S and Mandula J 1967Phys. Rev. 159 1251MATHCrossRefADSGoogle Scholar
  4. Cremmer Eet al 1983Nucl. Phys. B212 413CrossRefADSGoogle Scholar
  5. Ellis J and Sher M 1984 CERN-TH. 3968Google Scholar
  6. Green M and Schwartz J 1983Nucl. Phys. B218 43CrossRefADSGoogle Scholar
  7. Green M and Schwartz J 1984Phys. Lett. B (to be published)Google Scholar
  8. Haber H E and Kane G L 1984Phys. Rep. (to be published)Google Scholar
  9. Hall L, Lykken J and Weinberg S 1983Phys. Rev. D27 2359ADSGoogle Scholar
  10. Ibanez L E 1982Phys. Lett. B118 73ADSGoogle Scholar
  11. Ibanez L E and Lopez C 1984Nucl. Phys. B233 511CrossRefADSGoogle Scholar
  12. Inoue Ket al 1982Prog. Theor. Phys. 67 1889CrossRefADSGoogle Scholar
  13. Maalampi J and Pulido J 1983Nucl. Phys. B228 242CrossRefADSGoogle Scholar
  14. Mahapatra S, Mishra S and Misra S P 1984Phys. Rev. D30 2019ADSGoogle Scholar
  15. Mahapatra S, Misra S P 1984Phys. Rev. D (to be published)Google Scholar
  16. Mishra S and Misra S P 1984 (to be submitted)Google Scholar
  17. Nilles H P 1984Phys. Rep. 110 1CrossRefADSGoogle Scholar
  18. Polonyi J 1977 University of Budapest Rep. No. KFKI-1977-93 (unpublished)Google Scholar
  19. Pran Nath 1983Lectures at summer workshop on particle physics, Trieste Google Scholar
  20. Reya E and Roy D P 1984 DO-TH. 84/11Google Scholar
  21. Roy P and Majumdar P 1984Phys. Rev. D30 2432ADSGoogle Scholar
  22. Salam A and Strathdee J 1974Nucl. Phys. B76 477CrossRefADSMathSciNetGoogle Scholar
  23. Weinberg S 1984 UTTG-12-84Google Scholar
  24. Wess J and Bagger J 1981 Princeton lectures (Parts I & II)Google Scholar
  25. Wess J and Zumino B 1974aNucl. Phys. B70 39CrossRefADSMathSciNetGoogle Scholar
  26. Wess J and Zumino B 1974bNucl. Phys. B78 1CrossRefADSMathSciNetGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1985

Authors and Affiliations

  • S P Misra
    • 1
  1. 1.Institute of PhysicsBhubaneswarIndia

Personalised recommendations